∴的最小值为.即总有 查看更多

 

题目列表(包括答案和解析)

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标与纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)(理)设,求Sn的最小值(n>1,n∈N*);
(3)设求证:
(文)记数列{an}的前n项和为Sn,且.若对一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标与纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)(理)设Sn=
1
an+1
+
1
an+2
+…+
1
a2n
,求Sn的最小值(n>1,n∈N*);
(3)设Tk=
1
a1
+
1
a2
+…+
1
ak
求证:T2n
7n+11
36
(n>1,n∈N*)

(文)记数列{an}的前n项和为Sn,且Tn=
Sn
3•2n-1
.若对一切的正整数n,总有Tn≤m,求实数m的取值范围.

查看答案和解析>>

某加工厂需要定期购买原材料,已知每公斤材料的价格为1.5元,每次购买原材料需支付运费600元、每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;
(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值.

查看答案和解析>>

某加工厂需要定期购买原材料,已知每公斤材料的价格为1.5元,每次购买原材料需支付运费600元、
每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管).
(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式;
(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值.

查看答案和解析>>


同步练习册答案