1.平面直角坐标系的有关概念及画法;
例1 在上图中分别描出坐标是(2,3)、(-2,3)、(3,-2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?解
![]()
Q(2,3)与P(3,2)不是同一点;
S(-2,3)与R(3,-2)不是同一点.
例2 写出图中的点A、B、C、D、E、F的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?
(2)两条坐标轴上的点的坐标各有什么特征?
![]()
解 A(-1,2)、B (2,1)、C (2,-1)、D (-1,-1)、E (0,3)、F (-2,0).
(1)在第一象限内的点,横坐标是正数,纵坐标是正数;
在第二象限内的点,横坐标是负数,纵坐标是正数;
在第三象限内的点,横坐标是负数,纵坐标是负数;
在第四象限内的点,横坐标是正数,纵坐标是负数;
(2)x轴上点的纵坐标等于零;
y轴上点的横坐标等于零.
说明 从上面的例1、例2可以发现直角坐标系上每一个点的位置都能用一对有序实数表示,反之,任何一对有序实数在直角坐标系上都有唯一的一个点和它对应.也就是说直角坐标系上的点和有序实数对是一一对应的.
例3 在直角坐标系中描出点A(2,-3),分别找出它关于x轴、y轴及原点的对称点,并写出这些点的坐标.观察上述写出的各点的坐标,回答:
(1)关于x轴对称的两点的坐标之间有什么关系?
(2)关于 y轴对称的两点的坐标之间有什么关系?
(3)关于原点对称的两点的坐标之间又有什么关系?
解
![]()
(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;
(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;
(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反.
例4 在直角坐标平面内,(1)第一、三象限角平分线上点的坐标有什么特点?(2)第二、四象限角平分线上点的坐标有什么特点?
分析 如图,P为第一、三象限角平分线上位于第一象限内任一点,作PM⊥x轴于M,在Rt△PMO中,∠1=∠2=45°,所以|OM|=|MP|,则P点的横坐标,纵坐标绝对值相等,又因为P点位于第一象限内,OM为正值,MP也为正值,所以P点横坐标与纵坐标相同.同样若P点位于第三象限内,则OM为负值,MP也为负值,所以P点横坐标与纵坐标也相同.若P点为第二、四象限角平分线上任一点,则OM与MP一正一负,所以P点横坐标与纵坐标互为相反数.
![]()
解 (1)第一、三象限角平分线上点:横坐标与纵坐标相同;
问题1 例如你去过电影院吗?还记得在电影院是怎么找座位的吗?
解 因为电影票上都标有“×排×座”的字样,所以找座位时,先找到第几排,再找到这一排的第几座就可以了.也就是说,电影院里的座位完全可以由两个数确定下来.
问题2 在教室里,怎样确定一个同学的座位?
解 例如,××同学在第3行第4排.这样教室里座位也可以用一对实数表示.
问题3 要在一块矩形ABCD(AB=40mm,AD=25mm)的铁板上钻一个直径为10mm的圆孔,要求:
(1)孔的圆周上的点与AB边的最短距离为5mm,
(2)孔的圆周上的点与AD边的最短距离为15mm.
试问:钻孔时,钻头的中心放在铁板的什么位置?
![]()
分析 圆O的中心应是钻头中心的位置.因为⊙O直径为10mm,所以半径为5 mm,所以圆心O到AD边距离为20mm,圆心O到AB边距离为10mm.由此可见,确定一个点(圆心O)的位置要有两个数(20和10).
在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangled coordinates system).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.
在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标(abscissa);点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2). 在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.
![]()
如图是一条数轴,数轴上的点与实数是一一对应的.数轴上每个点都对应一个实数,这个实数叫做这个点在数轴上的坐标.例如,点A在数轴上的坐标是4,点B在数轴上的坐标是-2.5.知道一个点的坐标,这个点的位置就确定了.
![]()
我们学过利用数轴研究一些数量关系的问题,在实际生活中.还会遇到利用平面图形研究数量关系的问题.
课本第29页的第3、4、5、6题.
通过本节课的学习,一方面,我们进一步认识了如何列函数关系式,对于几何问题中列函数关系式比较困难,有的题目的自变量的取值范围也很难确定,只有通过一定量的练习才能做到熟练地解决这个问题;另一方面,对于用数学式子表示的函数关系式的自变量的取值范围,考虑两个方面,其一是分母不能等于0,其二是开偶次方的被开方数是非负数.
课本第28页练习的第1、2、3题
3.函数值
例2.在上面的练习(3)中,当MA=1cm时,重叠部分的面积是多少?
请同学们求一求在例1中当x=5时各个函数的函数值.
2.用数学式子表示的函数的自变量取值范围
例1.求下列函数中自变量x的取值范围
(1)y=3x-l (2)y=2x2+7 (3)y= (4)y=
分析:用数学表示的函数,一般来说,自变量的取值范围是使式子有意义的值,对于上述的第(1)(2)两题,x取任意实数,这两个式子都有意义,而对于第(3)题,(x+2)必须不等于0式子才有意义,对于第(4)题,(x-2)必须是非负数式子才有意义.
1.实际问题中的自变量取值范围
问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?
问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。
从右边的分析可以看出,第n排的 排数 座位数
座位 l 18
一方面可以用18+(n-1)表 2 18+1
3 18+2
示,另一方面可以用m表示,所以 … …
m=18+(n-1) n 18+(n-1)
n的取值怎么限制呢?显然这个n也应该取正整数,所以n取1≤n≤30的整数或0<n<31的整数。请同学们试着写出上面第2、3两个问题中自变量的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com