0  257667  257675  257681  257685  257691  257693  257697  257703  257705  257711  257717  257721  257723  257727  257733  257735  257741  257745  257747  257751  257753  257757  257759  257761  257762  257763  257765  257766  257767  257769  257771  257775  257777  257781  257783  257787  257793  257795  257801  257805  257807  257811  257817  257823  257825  257831  257835  257837  257843  257847  257853  257861  447090 

060]解:(1)根据题意,得

,解得

抛物线的解析式为,顶点坐标是(2,4)

(2),设直线的解析式为

直线经过点

(3)存在.

试题详情

058]解:(1)令,得  解得,得

A  B  C  ··········· 3分

(2)∵OA=OB=OC=   ∴BAC=ACO=BCO=

AP∥CB,∴PAB=过点P作PE轴于E

APE为等腰直角三角形

令OE=,则PE=  ∴P

∵点P在抛物线上 ∴ 

解得(不合题意,舍去)   ∴PE=················································· 4分

∴四边形ACBP的面积=AB•OC+AB•PE=························ 5分

(3). 假设存在∵PAB=BAC =  ∴PAAC

∵MG轴于点G,  ∴MGA=PAC =

在Rt△AOC中,OA=OC=  ∴AC=在Rt△PAE中,AE=PE=  ∴AP=  ·· 6分

设M点的横坐标为,则M

①点M在轴左侧时,则

(ⅰ) 当AMG PCA时,有=AG=

MG=  解得(舍去)

(舍去)………7分

(ⅱ) 当MAG PCA时有=

解得:(舍去)

 ∴M ·································································································· 8分

② 点M在轴右侧时,则

(ⅰ) 当AMG PCA时有=

AG=,MG=   

 解得(舍去)   ∴M

(ⅱ) 当MAGPCA时有=

解得:(舍去)   ∴M   ∴存在点M,使以A、M、G三点为顶点的三角形与PCA相似,M点的坐标为

[059]解:(1)∵四边形ABCD和四边形AEFG是正方形

   ∴AB=ADAE=AG,∠BAD=∠EAG=90º

∴∠BAE+∠EAD=∠DAG+∠EAD

∴∠BAE=∠DAG

∴△ BAE≌△DAG     …………4分

(2)∠FCN=45º      …………5分

理由是:作FHMNH

     ∵∠AEF=∠ABE=90º

   ∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º

   ∴∠FEH=∠BAE   又∵AE=EF,∠EHF=∠EBA=90º

∴△EFH≌△ABE          …………7分

FHBEEHABBC,∴CHBEFH

∵∠FHC=90º,∴∠FCH=45º    …………8分

(3)当点EBC运动时,∠FCN的大小总保持不变,…………9分

理由是:作FHMNH

由已知可得∠EAG=∠BAD=∠AEF=90º

结合(1)(2)得∠FEH=∠BAE=∠DAG

又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90º

  ∴△EFH≌△GAD,△EFH∽△ABE  ……11分

EHADBCb,∴CHBE,∴==

∴在RtFEH中,tanFCN=== 

∴当点EBC运动时,∠FCN的大小总保持不变,tanFCN

试题详情

056]解:(1) C(3,0);

(2)①抛物线,令=0,则=, ∴A点坐标(0,c).

,∴ ,∴点P的坐标为().

PD轴于D,∴点D的坐标为(). ……………………………………5分

根据题意,得a=a′,c= c′,∴抛物线F的解析式为

又∵抛物线F经过点D(),∴.……………6分

.又∵,∴.∴b:b′=

②由①得,抛物线F

令y=0,则. ∴

∵点D的横坐标为∴点C的坐标为().

设直线OP的解析式为.∵点P的坐标为(),

,∴,∴

∵点B是抛物线F与直线OP的交点,∴.∴

∵点P的横坐标为,∴点B的横坐标为

代入,得

∴点B的坐标为.∴BCOAABOC.(或BCOABC =OA),

∴四边形OABC是平行四边形.

又∵∠AOC=90°,∴四边形OABC是矩形.

[057](1) 

 (2)∵,∴

当点上运动时,

当点上运动时,作于点

,∴

(3)当时,

此时,过各顶点作对边的平行线,与坐标轴无第二个交点,所以点不存在;

时,,此时,

试题详情

055](1)过点轴,垂足为

的坐标为;············································ 4分

(2)抛物线经过点,则得到,························ 5分

解得,所以抛物线的解析式为;············································· 7分

(3)假设存在点,使得仍然是以为直角边的等腰直角三角形:

若以点为直角顶点;

则延长至点,使得,得到等腰直角三角形,··························· 8分

过点轴,

,可求得点;········· 11分

若以点为直角顶点;

则过点,且使得,得到等腰直角三角形,·············· 12分

过点轴,同理可证;··············································· 13分

,可求得点;················································ 14分

经检验,点与点都在抛物线上.···························· 16分

试题详情

054](1)由抛物线经过点A(0,1),C(2,4),

解得

∴抛物线对应的函数关系式为:.······························· (2分)

(2)当时,P点坐标为(1,1),∴Q点坐标为(2,0).       

   当时,P点坐标为(2,3),∴Q点坐标为(5,0).···························· (5分)

(3)当≤2时,S.                

   当≤5时,S.    (8分)

   当时,S的最大值为2.································································ (10分)

试题详情

053]解:(1)设,把代入,得,··························· 2分

∴抛物线的解析式为:.顶点的坐标为.······························· 5分

(2)设直线解析式为:(),把两点坐标代入,

解得.∴直线解析式为.······················ 7分

,∴················ 9分

  .···························································· 10分

∴当时,取得最大值,最大值为.······························································ 11分

(3)当取得最大值,,∴.∴四边形是矩形.

作点关于直线的对称点,连接

法一:过轴于轴于点

,则

中,由勾股定理,

解得.∵,∴

,可得.∴

坐标.································································································ 13分

法二:连接,交于点,分别过点的垂线,垂足为

易证

,则.∴

由三角形中位线定理,

,即

坐标.······················································· 13分

坐标代入抛物线解析式,不成立,所以不在抛物线上.·················· 14分

试题详情

051]解:(1),(-1,0),B(3,0).···················· 3分

(2)如图14(1),抛物线的顶点为M(1,-4),连结OM

 则 △AOC的面积=,△MOC的面积=,△MOB的面积=6,∴ 四边形 ABMC的面积=△AOC的面积+△MOC的面积+△MOB的面积=9.························································ 6分

说明:也可过点M作抛物线的对称轴,将四边形ABMC的面

积转化为求1个梯形与2个直角三角形面积的和.

(3)如图14(2),设D(m),连结OD

则 0<m<3, <0. 且 △AOC的面积=,△DOC的面积=,         

DOB的面积=-(),

∴ 四边形 ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积

==

∴ 存在点D,使四边形ABDC的面积最大为

(4)有两种情况:

如图14(3),过点BBQ1BC,交抛物线于点Q1、交y轴于点E,连接Q1C

∵ ∠CBO=45°,∴∠EBO=45°,BO=OE=3.

∴ 点E的坐标为(0,3). ∴ 直线BE的解析式为.························· 12分

解得 ∴ 点Q1的坐标为(-2,5).········ 13分

如图14(4),过点CCFCB,交抛物线于点Q2、交x轴于点F,连接BQ2

∵ ∠CBO=45°,∴∠CFB=45°,OF=OC=3.

∴ 点F的坐标为(-3,0).∴ 直线CF的解析式为.························ 14分

解得

∴点Q2的坐标为(1,-4).综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),

使△BCQ1、△BCQ2是以BC为直角边的直角三角形.

[052]解:(1)根据题意,得

解得.(2分)

(2)当时,得

,当时,得

,∵点在第四象限,∴.····································· (4分)

时,得,∴

∵点在第四象限,∴.································································ (6分)

(3)假设抛物线上存在一点,使得四边形为平行四边形,则

,点的横坐标为

当点的坐标为时,点的坐标为

∵点在抛物线的图象上,∴,∴

,∴(舍去),∴

.························································································· (9分)

当点的坐标为时,点的坐标为

∵点在抛物线的图象上,∴,∴

,∴(舍去),,∴,∴

试题详情

051]如图14(1),抛物线x轴交于AB两点,与y轴交于点C(0,).[图14(2)、图14(3)为解答备用图]

(1)   ,点A的坐标为   ,点B的坐标为   

(2)设抛物线的顶点为M,求四边形ABMC的面积;

(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;

(4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.

 

试题详情


同步练习册答案