0  257728  257736  257742  257746  257752  257754  257758  257764  257766  257772  257778  257782  257784  257788  257794  257796  257802  257806  257808  257812  257814  257818  257820  257822  257823  257824  257826  257827  257828  257830  257832  257836  257838  257842  257844  257848  257854  257856  257862  257866  257868  257872  257878  257884  257886  257892  257896  257898  257904  257908  257914  257922  447090 

2.已知是等差数列,,则该数列前13项和等于

A.156           B.132              C.110          D.100

试题详情

1.已知全集,则正确表示集合的关系的韦恩(Venn)图是

A.          B.          C.           D.

试题详情

050]解:(1)∵.而

,∴.∴当

(2)∵平行且等于

∴四边形是平行四边形.

,∴.∴

.∴

B,交,过,交

.∵

.又

(3)

,则有,解得

(4)在中,

∴在运动过程中,五边形的面积不变.

试题详情

049]解:(1)由题意得  解得

∴此抛物线的解析式为························································· 3分

(2)连结.因为的长度一定,所以周长最小,就是使最小.点关于对称轴的对称点是点,与对称轴的交点即为所求的点.

设直线的表达式为解得

∴此直线的表达式为

代入得点的坐标为

(3)存在最大值,理由:∵

方法一:连结

=[来源:Zxx]

=∴当时,····················· 9分

方法二:

=

=∴当时,························· 9分

试题详情

048]解:(1)由题意得 6=a(-2+3)(-2-1),∴a=-2,

∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)

设直线AC为y=kx+b,则有0=k+b,6=-2k+b,解得 k=-2,b=2,

∴直线AC为y=-2x+2

(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)

∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92

=-2a+122+92,∴当a=-12时,PM的最大值为926分

②M1(0,6)M2-14,678

试题详情

047]解:方法一:如图(1-1),连接

 

 由题设,得四边形和四边形关于直线对称.

 ∴垂直平分.∴····················································· 1分

 ∵四边形是正方形,∴

    ∵

中,.∴解得,即 3分

  在和在中,

··················································································· 5分

 设

    解得    ∴················································· 7分

 方法二:同方法一,·················································································· 3分

  如图(1-2),过点于点,连接

  

∴四边形是平行四边形.

    ∴

    同理,四边形也是平行四边形.∴

  ∵

  

  在

  ····························· 5分

·········································· 7分

类比归纳

(或);  ·················································· 12分

试题详情

046]网](1)解:由点坐标为

点坐标为··································· (2分)

解得点的坐标为························································· (3分)

················································································ (4分)

  (2)解:∵点上且

点坐标为(5分)又∵点上且

点坐标为(6分)∴(7分)

(3)解法一:时,如图1,矩形重叠部分为五边形(时,为四边形).过,则

 

试题详情

044](1) 配方,得y=(x–2)2 –1,∴抛物线的对称轴为直线x=2,顶点为P(2,–1) .

x=0代入y=x2 –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)与点B关于直线x=2对称,∴点B的坐标是(4,1). 2分

设直线l的解析式为y=kx+b(k≠0),将BP的坐标代入,有

解得∴直线l的解析式为y=x–3.3分

(2) 连结ADOC于点E,∵ 点D由点A沿OC翻折后得到,∴ OC垂直平分AD

由(1)知,点C的坐标为(0,–3),∴ 在Rt△AOC中,OA=2,AC=4,∴ OC=2

据面积关系,有 ×OC×AE=×OA×CA,∴ AE=AD=2AE=

DFABF,易证Rt△ADF∽Rt△COA,∴

AF=·AC=DF=·OA=,5分

又 ∵OA=1,∴点D的纵坐标为1–= –

∴ 点D的坐标为(,–).

(3) 显然,OPAC,且O′为AB的中点,

∴ 点P是线段BC的中点,∴ SDPC= SDPB

故要使SDQC= SDPB,只需SDQC=SDPC

 过P作直线mCD平行,则直线m上的任意一点与CD构成的三角形的面积都等于SDPC ,故m与抛物线的交点即符合条件的Q点.

容易求得过点C(0,–3)、D(,–)的直线的解析式为y=x–3,

据直线m的作法,可以求得直线m的解析式为y=x

x2–2x+1=x,解得 x1=2,x2=,代入y=x,得y1= –1,y2=

因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(),使得SDQC= SDPB. 

[045](1)将A(0,1)、B(1,0)坐标代入解得

∴抛物线的解折式为…(2分)

(2)设点E的横坐标为m,则它的纵坐标为

即 E点的坐标()又∵点E在直线

   解得(舍去),

∴E的坐标为(4,3)……(4分)

(Ⅰ)当A为直角顶点时

过A作AP1⊥DE交x轴于P1点,设P1(a,0)  易知D点坐标为(-2,0)   由Rt△AOD∽Rt△POA得

,∴a=  ∴P1(,0)……(5分)

(Ⅱ)同理,当E为直角顶点时,P2点坐标为(,0)……(6分)

(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3()由∠OPA+∠FPE=90°,得∠OPA=∠FEP   Rt△AOP∽Rt△PFE 

解得

∴此时的点P3的坐标为(1,0)或(3,0)……(8分)

综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)(Ⅲ)抛物线的对称轴为…(9分)∵B、C关于x=对称   ∴MC=MB

要使最大,即是使最大 

由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大.易知直线AB的解折式为∴由  得

 ∴M(,-)……(11分)

试题详情

043]解(Ⅰ)

.··························································································· 1分

分别代入,得

解得.函数的解析式为.································· 3分

(Ⅱ)由已知,得,设的高为

,即.

根据题意,,由,得.

时,解得

时,解得.

的值为.··············································································· 6分

(Ⅲ)由已知,得.

,化简得.

,得,   .

.

时,;当时,

时,.························································································· 10分

试题详情

042]解:(1)∵点的中点,∴,∴

又∵的角平分线,∴

,∴.········································································· 3分

(2)过点的平分线的垂线,垂足为,点即为所求.

易知点的坐标为(2,2),故,作

是等腰直角三角形,∴

∴点的坐标为(3,3).

∵抛物线经过原点,∴设抛物线的解析式为

又∵抛物线经过点和点,∴有  解得

∴抛物线的解析式为.··············································································· 7分

(3)由等腰直角三角形的对称性知D点关于的平分线的对称点即为点.

连接,它与的平分线的交点即为所求的点(因为,而两点之间线段最短),此时的周长最小.

∵抛物线的顶点的坐标点的坐标

所在直线的解析式为,则有,解得

所在直线的解析式为

满足,解得,故点的坐标为

的周长即是

(4)存在点,使.其坐标是.································· 14分

试题详情


同步练习册答案