2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
教学目的:
1.掌握平面向量数量积运算规律;
(王海)
第8课时
9.对于两个非零向量a、b,求使|a+tb|最小时的t值,并求此时b与a+tb的夹角.
8.设m、n是两个单位向量,其夹角为60°,求向量a=2m+n与b=2n-3m的夹角.
7.已知|a|=1,|b|=
,(1)若a∥b,求a·b;(2)若a、b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角.
6.已知a⊥b、c与a、b的夹角均为60°,且|a|=1,|b|=2,|c|=3,则(a+2b-c)2=______.
5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么a·b= .
4.已知向量a、b的夹角为
,|a|=2,|b|=1,则|a+b|·|a-b|=
.
3.已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com