问题1:弄清求变力做功的几种方法
功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:
1、等值法
等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。
例1、如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F(恒定),滑块沿水平面由A点前进S至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T,显然人对绳的拉力F等于T。T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。由图1可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为:
![]()
![]()
5.深刻理解功能关系,掌握能量守恒定律。
(1)做功的过程是能量转化的过程,功是能的转化的量度。
能量守恒和转化定律是自然界最基本的规律之一。而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。本章的主要定理、定律都可由这个基本原理出发而得到。
需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
(2)复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。突出:“功是能量转化的量度”这一基本概念。
1物体动能的增量由外力做的总功来量度:W外=ΔEk,这就是动能定理。
2物体重力势能的增量由重力做的功来量度:WG= -ΔEP,这就是势能定理。
3物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W其表示除重力以外的其它力做的功),这就是机械能定理。
4当W其=0时,说明只有重力做功,所以系统的机械能守恒。
5一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。Q=fd(d为这两个物体间相对移动的路程)。
2.机械能守恒定律的各种表达形式
⑴
,即
;
⑵
;
;
用⑴时,需要规定重力势能的参考平面。用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用ΔE增=ΔE减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
1.机械能守恒定律的两种表述
⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
对机械能守恒定律的理解:
①机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。
②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功。
4.深刻理解势能的概念,掌握机械能守恒定律。
3.深刻理解动能的概念,掌握动能定理。
(1) 动能
是物体运动的状态量,而动能的变化ΔEK是与物理过程有关的过程量。
(2)动能定理的表述
合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEK.
动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
动能定理建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
2.深刻理解功率的概念
(1)功率的物理意义:功率是描述做功快慢的物理量。
(2)功率的定义式:
,所求出的功率是时间t内的平均功率。
(3)功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。
(4)重力的功率可表示为PG=mgVy,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
1.深刻理解功的概念
功是力的空间积累效应。它和位移相对应(也和时间相对应)。计算功的方法有两种:
⑴按照定义求功。即:W=Fscosθ。 在高中阶段,这种方法只适用于恒力做功。当
时F做正功,当
时F不做功,当
时F做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔEk或功能关系求功。当F为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
(3).会判断正功、负功或不做功。判断方法有:1用力和位移的夹角α判断;2用力和速度的夹角θ判断定;3用动能变化判断.
(4)了解常见力做功的特点:
重力做功和路径无关,只与物体始末位置的高度差h有关:W=mgh,当末位置低于初位置时,W>0,即重力做正功;反之则重力做负功。
滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。
(5)一对作用力和反作用力做功的特点:1一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;2一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
15.
如图44所示,水平放置的平行金属板A和B的距离为d,它们的右端安放着垂直于金属板的靶MN,现在A、B板上加上如图45所示的方波电压,电压的正向值为U0,反向电压值为U0/2,且每隔T/2换向一次,现有质量为m、带正电且电量为q的粒子束从A、B的中点O沿平行于金属板方向OO/射入,设粒子能全部打在靶上而且所有粒子在A、B间的飞行时间均为T。不计重力的影响,试问:
(1)在靶MN上距其中心O/点多远的范围内有粒子击中?
(2)要使粒子能全部打在靶MN上,电压U0的数值应满足什么条件?(写出U0、m、d、q、T的关系式即可)
14.
一质量为m,带电量为+q的小球,用长为L的绝缘线悬挂在水平向右的匀强电场中,开始时把悬线拉到水平,小球在位置A点。然后将小球由静止释放,球沿弧线下摆到α=600的B点(如图43所示),此时小球速度恰好为零,试求(1)匀强电场场强。(2)小球在运动中的最大速度。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com