8.已知抛物线的解析式为y=-(x-2)2+l,则抛物线的顶点坐标是( )
A.(-2,1)B.(2,l)C.(2,-1)D.(1,2)
7.小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h=3.5 t-4.9 t2(t的单位s;h中的单位:m)可以描述他跳跃时
重心高度的变化.如图,则他起跳后到重心最高时所用的时间是( )
A.0.71s B.0.70s C.0.63s D.0.36s
6.
二次函数
的图象,如图1-2-40所示,根据图象可得a、b、c与0的大小关系是( )
A.a>0,b<0,c<0 B.a>0,b>0,c>0
C.a<0,b<0,c<0 D.a<0,b>0,c<0
5.抛物线y=x2-x的顶点坐标是( )
![]()
4. 二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )
A.3 B.5 C.-3和5 D.3和-5
3.抛物线y=x2-2x+3的对称轴是直线( )
A.x =2 B.x =-2 C.x =-1 D.x =1
2.抛物线
的顶点坐标在第三象限,则
的值为( )
A.
B.
C.
D.
.
1.二次函数y=-x2+6x-5,当
时,
,且
随
的增大而减小。
12.直线与抛物线的交点
(1)
轴与抛物线
得交点为(0,
).
(2)与
轴平行的直线
与抛物线
有且只有一个交点(
,
).
(3)抛物线与
轴的交点
二次函数
的图像与
轴的两个交点的横坐标
、
,是对应一元二次方程
的两个实数根.抛物线与
轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点![]()
![]()
抛物线与
轴相交;
②有一个交点(顶点在
轴上)![]()
![]()
抛物线与
轴相切;
③没有交点![]()
![]()
抛物线与
轴相离.
(4)平行于
轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为
,则横坐标是
的两个实数根.
(5)一次函数
的图像
与二次函数
的图像
的交点,由方程组
的解的数目来确定:①方程组有两组不同的解时![]()
与
有两个交点; ②方程组只有一组解时![]()
与
只有一个交点;③方程组无解时![]()
与
没有交点.
(6)抛物线与
轴两交点之间的距离:若抛物线
与
轴两交点为
,由于
、
是方程
的两个根,故
![]()
![]()
[能力训练]
7.用待定系数法求二次函数的解析式
(1)一般式:
.已知图像上三点或三对
、
的值,通常选择一般式.
(2)顶点式:
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与
轴的交点坐标
、
,通常选用交点式:
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com