32、(2009重庆卷文)(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为
和
,且各株大树是否成活互不影响.求移栽的4株大树中:
![]()
(Ⅰ)至少有1株成活的概率;
(Ⅱ)两种大树各成活1株的概率.
解 设
表示第
株甲种大树成活,
; 设
表示第
株乙种大树成活, ![]()
则
独立,且![]()
(Ⅰ)至少有1株成活的概率为:
![]()
(Ⅱ)由独立重复试验中事件发生的概率公式知,两种大树各成活1株的概率为:
![]()
2005-2008年高考题
31、(2009重庆卷理)(本小题满分13分,(Ⅰ)问7分,(Ⅱ)问6分)
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为
和
,且各株大树是否成活互不影响.求移栽的4株大树中:
(Ⅰ)两种大树各成活1株的概率;
(Ⅱ)成活的株数
的分布列与期望.
![]()
解
设
表示甲种大树成活k株,k=0,1,2
表示乙种大树成活l株,l=0,1,2
则
,
独立. 由独立重复试验中事件发生的概率公式有
,
.
据此算得
,
,
.
![]()
,
,
.
(Ⅰ) 所求概率为
.
(Ⅱ) 解法一:
的所有可能值为0,1,2,3,4,且
![]()
,
,
=
,
.
.
综上知
有分布列
|
|
0 |
1 |
2 |
3 |
4 |
|
P |
1/36 |
1/6 |
13/36 |
1/3 |
1/9 |
从而,
的期望为
![]()
(株)
解法二:
分布列的求法同上
令
分别表示甲乙两种树成活的株数,则
![]()
故有
![]()
从而知![]()
30、(2009四川卷理)(本小题满分12分)
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司
组织了一个有36名游客的旅游团到四川名胜旅游,其中
是省外游客,其余是省内游客。 在省外游客中有
持金卡,在省内游客中有
持银卡。
![]()
(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;
(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量
,求
的分布列及数学期望
。
本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考
察运用概率只是解决实际问题的能力。
解:(Ⅰ)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持
银卡。设事件
为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,
事件
为“采访该团3人中,1人持金卡,0人持银卡”,
事件
为“采访该团3人中,1人持金卡,1人持银卡”。
![]()
![]()
![]()
![]()
所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是
。
…………………………………………………………6分
(Ⅱ)
的可能取值为0,1,2,3
,
![]()
,
,
![]()
所以
的分布列为
|
|
0 |
1 |
2 |
3 |
|
|
|
|
|
|
所以
, ……………………12分
所以![]()
由事件的独立性的
![]()
解答2(Ⅰ)设事件A表示“一个月内被投诉2次”设事件B表示“一个月内被投诉的次数不超过1次”
所以![]()
(Ⅱ)同解答1(Ⅱ)
29、(2009湖南卷理)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.
、
、
,现在3名工人独立地从中任选一个项目参与建设。
(I)求他们选择的项目所属类别互不相同的概率;
(II)记
为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求
的分布列及数学期望。
解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件
,
,
,i=1,2,3.由题意知![]()
相互独立,![]()
相互独立,![]()
相互独立,
,
,
(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P(
)=,P(
)=
,P(
)=![]()
(1)他们选择的项目所属类别互不相同的概率
P=3!P(![]()
![]()
)=6P(
)P(
)P(
)=6![]()
![]()
![]()
![]()
![]()
=![]()
(2) 解法1 设3名工人中选择的项目属于民生工程的人数为
,由己已知,
-B(3,
),且
=3
。
所以P(
=0)=P(
=3)=![]()
=
,
P(
=1)=P(
=2)= ![]()
=
P(
=2)=P(
=1)=![]()
![]()
=![]()
P(
=3)=P(
=0)=
=
![]()
故
的分布是
|
|
0 |
1 |
2 |
3 |
|
P |
|
|
|
|
的数学期望E
=0![]()
+1![]()
+2![]()
+3![]()
=2
解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件
,
i=1,2,3 ,由此已知,
·D,
相互独立,且
P(
)-(
,
)= P(
)+P(
)=
+
=
所以
--
,既
,
故
的分布列是
|
|
|
1 |
2 |
3 |
|
|
|
|
|
|
28、(2009陕西卷文)(本小题满分12分)
椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1
(Ⅰ) 求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
解 解答1(Ⅰ)设事件A表示“一个月内被投诉的次数为0”事件B表示“一个月内被投诉的次数为1”
所以![]()
(Ⅱ)设事件
表示“第
个月被投诉的次数为0”事件
表示“第
个月被投诉的次数为1”事件
表示“第
个月被投诉的次数为2”事件D表示“两个月内被投诉2次”
所以![]()
所以两个月中,一个月被投诉2次,另一个月被投诉0次的概率为![]()
27、(2009全国卷Ⅰ文)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
[解析]本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
解
记“第
局甲获胜”为事件
,“第
局甲获胜”为事件
。
(Ⅰ)设“再赛2局结束这次比赛”为事件A,则
,由于各局比赛结果相互独立,故
![]()
。
(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互独立,故
![]()
![]()
26、(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率;
![]()
(II)至少有1人选择的项目属于民生工程的概率.
解 记第
名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件
i=1,2,3.由题意知
相互独立,
相互独立,![]()
相互独立,
(i,j,k=1,2,3,且i,j,k互不相同)相互独立,
且
(Ⅰ)他们选择的项目所属类别互不相同的概率
P=![]()
![]()
![]()
(Ⅱ)至少有1人选择的项目属于民生工程的概率
P=![]()
![]()
![]()
25、(2009辽宁卷理)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)
解(Ⅰ)依题意X的分列为
![]()
![]()
(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.
B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.
依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,
,
所求的概率为
![]()
![]()
……
24、(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)
一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量
,求
的分布列和数学期望。
解 依题意,可分别取
、6、
11取,则有
![]()
的分布列为
|
|
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|
|
|
|
|
|
|
|
|
.
23、(2009江西卷理)(本小题满分12分)
某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是
.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令
表示该公司的资助总额.
(1) 写出
的分布列; (2) 求数学期望
.
解(1)
的所有取值为![]()
![]()
![]()
(2)
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com