5.若函数log2(kx2+4kx+3)的定义域为R,则k的取值范围是 ( )
A.
B.
C.
D.![]()
6.下列函数图象正确的是 ( )
A B C D
4.若a>0,b>0,ab>1,
=ln2,则logab与
的关系是 ( )
A.logab<
B.logab=![]()
C.
logab>
D.logab≤![]()
3.设函数y=lg(x2-5x)的定义域为M,函数y=lg(x-5)+lgx的定义域为N,则 ( )
A.M∪N=R B.M=N C.M
N D.M
N
2.如果lgx=lga+3lgb-5lgc,那么 ( )
A.x=a+3b-c B.
C.
D.x=a+b3-c3
1.对数式
中,实数a的取值范围是 ( )
A.
B.(2,5) C.
D. ![]()
22. 解: (1)由题意得:![]()
∴在(-∞,1)上,
<0;
在(1,3)上,
>0; 在3,+∞)上,
<0;
因此,f(x)在x0=1处取得极小值-4
∴a+b+c=-4 ①…
![]()
①②③联立得:![]()
∴f(x)=-x3+6x2-9x
(2)由(1)知f(x)在x=3处取得极大值为:f(3)=0
(3)![]()
①当2≤m≤3时,![]()
②当m<2时,g(x)在[2,3]上单调递减,![]()
③当m>3时,g(x)在[2,3]上单调递增,![]()
21. 解:(1)
,知x =1时,y
= 4,
又![]()
∴直线l的方程为y-4 = 2 (x-1),即y = 2x +2
又点(n-1,an+1-an-a1)在l上,![]()
即
![]()
![]()
各项迭加,得
![]()
![]()
∴通式![]()
(2)∵m为奇数,
为整数,
由题意,知a5是数列{an}中的最小项,![]()
∴得m = 9
令![]()
则
,由
,得![]()
即为
时,
单调递增,即
成立,
∴n的取值范围是n≥7,且![]()
20. (1)由![]()
有极值,
①
处的切线l的倾斜角为
②
由①②可解得a =-4,b = 5
设切线l的方程为y = x + m,由坐标原点(0,0)到切线l的距离为
,可得m =±1,
又切线不过第四象限,所以m =1,切线方程为y = x + 1.
∴切点坐标为(2,3),![]()
故a=-4,b = 5,c =1.
(2)由(Ⅰ)知![]()
,∴函数
在区间[-1,1]上递增,在
上递减,
又
,
∴
在区间
上的最大值为3,最小值为-9.
19. (1)
,
又
在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数,
又
(2)![]()
当x=1时,
此时![]()
即切线的斜率为-
,切点坐标为(1,
), 所求切线方程为9x+6y-16=0.
至少有一件是次品的概率为
(2)设抽取n件产品作检验,则3件次品全部检验出的概率为![]()
由
整理得:
,
∴当n=9或n=10时上式成立.
答:任意取出3件产品作检验,其中至少有1件是次品的概率为
为了保证使3件次品全部检验出的概率超过0.6,最少应抽取9件产品作检验.
18. (1)![]()
(2)![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com