0  411098  411106  411112  411116  411122  411124  411128  411134  411136  411142  411148  411152  411154  411158  411164  411166  411172  411176  411178  411182  411184  411188  411190  411192  411193  411194  411196  411197  411198  411200  411202  411206  411208  411212  411214  411218  411224  411226  411232  411236  411238  411242  411248  411254  411256  411262  411266  411268  411274  411278  411284  411292  447090 

5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.

试题详情

4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.

试题详情

3.注意之间关系的转化。如:

=  ,  =

试题详情

2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。

试题详情

1.证明数列是等差或等比数列常用定义,即通过证明而得。

试题详情

3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

试题详情

2. 在等差数列中,有关的最值问题--常用邻项变号法求解: 

(1)当>0,d<0时,满足的项数m使得取最大值.

(2)当<0,d>0时,满足的项数m使得取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

试题详情

1.判断和证明数列是等差(等比)数列常有三种方法:

(1)定义法:对于n≥2的任意自然数,验证为同一常数。

(2)通项公式法:

①若  = +(n-1)d= +(n-k)d ,则为等差数列;

②若  ,则为等比数列。

(3)中项公式法:验证中项公式成立。

试题详情

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

试题详情


同步练习册答案