7.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是______.
解析:分别求点P关于直线x+y=4及y轴的对称点,为P1(4,2)、P2(-2,0),由物理知识知,光线所经路程即为P1P2=2.答案:2
6.(2010年苏南四市调研)若函数y=ax+8与y=-x+b的图象关于直线y=x对称,则a+b=________.
解析:直线y=ax+8关于y=x对称的直线方程为x=ay+8,所以x=ay+8与y=-x+b为同一直线,故得,所以a+b=2.答案:2
5.已知直线l经过点(,2),其横截距与纵截距分别为a、b(a、b均为正数),则使a+b≥c恒成立的c的取值范围为________.
解析:设直线方程为+=1,∴+=1,a+b=(a+b)·(+)=++≥,故c≤.答案:(-∞,]
4.过点P(1,2)作直线l,使直线l与点M(2,3)和点N(4,-5)距离相等,则直线l的方程为________________.
解析:直线l为与MN平行或经过MN的中点的直线,当l与MN平行时,斜率为-4,故直线方程为y-2=-4(x-1),即4x+y-6=0;当l经过MN的中点时,MN的中点为(3,-1),直线l的斜率为-,故直线方程为y-2=-(x-1),即3x+2y-7=0.答案:3x+2y-7=0或4x+y-6=0
3.已知两条直线l1:ax+by+c=0,直线l2:mx+ny+p=0,则an=bm是直线l1∥l2的________条件.
解析:∵l1∥l2⇒an-bm=0,且an-bm=0⇒/ l1∥l2.答案:必要不充分
2.若三条直线l1:x+y=7,l2:3x-y=5,l3:2x+y+c=0不能围成三角形,则c的值为________.
解析:由l1,l2,l3的方程可知l1,l2,l3不平行,由解得交点(3,4),代入l3的方程得c=-10.
1.已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为______________.
解析:kPQ==-1,PQ的中点为(,),即(2,3),
∴kl=1,∴直线l的方程为y-3=(x-2),即x-y+1=0.
6.直线y=2x是△ABC中∠C的角平分线所在的直线,若A、B的坐标分别为A(-4,2),B(3,1),求点C的坐标,并判断△ABC的形状.
解:设A(-4,2)关于直线y=2x对称的点A′的坐标是(m,n)
由解得即A′的坐标是(4, -2),
由B、A′得BC所在的直线方程,3x+y-10=0,由解得C的坐标是(2,4),又∵kAC′=,kBC′=-3,
∴AC′⊥BC′,即△ABC′是直角三角形.
B组
5.在平面直角坐标系中,定义平面内与直线垂直的非零向量称为直线的法向量,若直线l过点A(-2,3),且法向量为n=(1,-2),则直线l的方程为_________.
解析:设P(x,y)是直线l上任意一点,则=(-2-x,3-y),且⊥n,故·n=0,即(-2-x,3-y)·(1,-2)=-x+2y-8=0,即直线l的方程为x-2y+8=0.答案:x-2y+8=0
4.若点P(a,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y-3<0表示的平面区域内,则实数a的值为________.
解析:由=4得a=7或-3,又2a+3-3<0,得a<0,∴a=-3.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com