4.波的叠加与波的干涉
(1)波的叠加原理:在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和.相遇后仍保持原来的运动状态.波在相遇区域里,互不干扰,有独立性.
[例1]一个波源在绳的左端发出半个波①,频率为f1,振幅为A1;同时另一个波源在绳的右端发出半个波②,频率为f2,振幅为A2, P为两波源的中点,由图6-18可知,下述说法错误的是( )
A.两列波同时到达两波源的中点P
B.两列波相遇时, P点波峰值可达A1+A2
C.两列波相遇后,各自仍保持原来的波形独立传播
D、两列波相遇时,绳上的波峰可达A1+A2的点只有一点,此点在P点的左侧
解析:因两列波在同一介质(绳)中传播,所以波速相同,由图可知 λ1>λ2,说明它们的波峰高P点距离不等,波同时传至P点,波峰不会同时到P点,所以P点波峰值小于A1+ A2.两列波波峰能同时传到的点应在P点左侧,所以A,D正确,B错误,又由波具有独立性,互不干扰,所以C正确.答案:B
[例2]一波源在绳子的左瑞发生波P.另一波源在同一根绳子右端发生波Q,波速为lm/s.在t=0时绳上的波形如图中的a所示,根据波的叠加原理,以下判断正确的是( )
A.当t=2s时.波形图如b图.t=4s时.波形图如c图;
B.当t=2s时,波形图如 b图,t=4s时,波形图如d图
C.当 t=2s时,波形图如C图,t=4s时,波形图如b图;
D.当 t=2s时,波形图如 C图,t=4s时,波形图如 d图
解析:由图中的所示的图形来看,b图肯定是不正确的,因为波在同一媒质中传播时的波长是不变,而b图中波长发生了变化,所以选项内容中凡涉及到了b图的情况肯定是不正确的,本题4个选项中只有D选项没有涉及到b图,所以D选项肯定正确.从波的叠加角度来分析,在t=2s时,两列波均传播了2m,它们刚好重合,由于它们是波峰和波谷相遇,所以叠加的结果是相遇后的质点位移均为零,C图是正确的,当t=4s时,两列波均传播了4m的距离,相当于在a图的位置上互换,d图是正确的.所以D选项正确.
点评:本题的关键是扣住在同一媒质中,波传播过程中波形不变以及传播的距离与时间的关系.
[例3]两列简谐波均沿x轴传播,传播速度的大小相等,其中一列沿x轴正方向传播,如图32中实线所示。一列波沿x负方向传播,如图32中虚线所示。这两列波的频率相等,振动方向均沿y轴,则图中x=1,2,3,4,5,6,7,8各点中振幅最大的是x= 的点,振幅最小的是x= 的点。
解析:对于x=4、8的点,此时两列波引起的位移的矢量和为零,但两列波引起的振动速度的矢量和最大,故应是振动最强的点,即振幅最大的点。对于x=2和6的点,此时两列波引起的位移矢量和为零,两列波引起的振动速度的矢量和也为零,故应是振动最弱的点,即振幅最小的点。
(2)波的干涉:
①条件:频率相同的两列同性质的波相遇.
②现象:某些地方的振动加强,某些地方的振动减弱,并且加强和减弱的区域间隔出现,加强的地方始终加强,减弱的地方始终减弱,形成的图样是稳定的干涉图样.
说明:①加强、减弱点的位移与振幅.
加强处和减弱处都是两列波引起的位移的矢量和,质点的位移都随时间变化,各质点仍围烧平衡位置振动,与振源振动周期相同.
加强处振幅大,等于两列波的振幅之和,即A=A1 +A2,质点的振动能量大,并且始终最大.
减弱处振幅小,等于两列波的振福之差,即A=∣A1-A2∣,质点振动能量小,并且始终最小,若A1=A2,则减弱处不振动.
加强点的位移变化范围: 一∣A1 +A2∣-∣A1 +A2∣
减弱点位移变化范围:一∣A1-A2∣-∣A1-A2∣
②干涉是波特有的现象.
③加强和减弱点的判断.
波峰与波峰(波谷与波谷)相遇处一定是加强的,并且用一条直线将以上加强点连接起来,这条直线上的点都是加强的;而波峰与波谷相遇处一定是减弱的,把以上减弱点用直线连接起来,直线上的点都是减弱的.加强点与减弱点之间各质点的振幅介于加强点与减弱点振幅之间.
当两相干波源振动步调相同时,到两波源的路程差Δs是波长整数倍处是加强区.而路程差是半波长奇数倍处是减弱区.
任何波相遇都能叠加,但两列频率不同的同性质波相遇不能产生干涉.
[例4]如图所示,在坐标xoy的y轴上有两个相同的波源A、B,它们激起水波波长为2m,A、B的坐标分别为(0,2m)和(0,5m).在x轴上从-∞到十∞范围内两列波叠加相减弱的点的个数为多少个?
[解析]在X轴上任取点C,连接CA、CB.如图所示,由图可知CB-CA≤AB=3m(由三角形任意两边之差小于第三边原理得出左式),所以(CB-CA)的值可以取lm、2m、3m.而A、B两波源激起的水波波长为2m,则只有当(CB-CA)值为半波长的奇数倍时,两列波相遇才是减弱的,故取lm、3m时两列波叠加后是减弱的,由于是在x轴上从-∞到十∞范围内寻找,以及关于y轴对称的关系,故减弱点共有3个.
[例5]两列振动情况完全相同的振源。S1和s2在同一个介质中形成机械波。某时刻两列波叠加的示意图如图所示,图中实线表示处于波峰的各质点,虚线表示处于波谷的各质点。图中a、b、c三点中,振动情况加强的质点有
,振动情况减弱的质点有 。
解析:在两列波叠加的区域内,图中a点是实线与实线的交点,表明两列波都要求a点为正向位移,a点的位移是两列波位移的矢量之和,即振幅之和,是振动情况加强的质点。同样处于虚线与虚线交点的b质点,也是振动情况加强的点。只是b是处于反向最大位移(也等于两列波振幅之和)。因此处于实线与虚线交点的质点c是振动情况减弱的质点,其此刻位移为零。
本题叠加的两列波是波长(频率)相同的两列波,满足干涉的条件。过半个周期,图中实线变为虚线,虚线变为实线。a、b仍是振动情况加强的点,c点仍是振动情况减弱的点。即a、b以两列波振幅的和为振幅振动,C点则以它们振幅之差为振幅振动,且加强点与减弱点间隔排列。
[例6]如图所示,在同一均匀媒质中有S1、S2两个波源,这个波源的频率、振动方向均相同,且振动的步调完全一致,S1、S2之间相距两个波长,D点为S1、S2连线中点,今以D点为圆心,以R=DS1为半径画圆,问在该圆周上(S1、S2两波源除外)共有几个加强点?
分析:干涉强、弱区的判断方法有两种:
(1)在波峰与波峰相遇或波谷与波谷相遇处是干涉加强区;在波峰与波谷相遇或波谷与波峰相遇处是干涉减弱区。
(2)与相同波源的距离差为半波长的偶数倍处是干涉加强区;与相同波源的距离差为半波长的奇数倍处是干涉减弱区。
解答:由干涉强、弱的第二种判断方法可知,干涉加强区的集合实际上是以两波源所在处为焦点的双曲线簇。由此不难判断:以波源边线为直径的贺周上分布看,到两波源距离差等于0的两个加强是D1、D2;到两波源距离差等于
的四个加强是A1、A2、C1、C2。即:除两波源外,圆周上振动加强是共有六个。
[例7]如图所示,在半径为R=45m的圆心O和圆周A处,有两个功率差不多的喇叭,同时发出两列完全相同的声波,且波长
=10m。若人站在B处,正好听不到声音;若逆时针方向从B走到A,则时而听到时而听不到声音。试问在到达A点之前,还有几处听不到声音?
解析:因为波源A、O到B点的波程差为Δr=r1-r2=R=45m=
,所以B点发生干涉相消现象。
在圆周任一点C上听不到声音的条件为:
Δr = r1-r2 =±(2k+1)λ/2=±5(2k+1)
将r2=R=45m代入上式得:r1=±5(2k+1)+ r2
所以:r1=10k+50 或 r1= -10k+40
而0 < r1 < 90m,所以有:0 <(10k+50) < 90m 和 0 <(-10k+40) < 90m
求得 :-5 < k < 4
即k = -4、-3、-2、-1、0、1、2、3,所以在到达A点之前有八处听不到声音。
3.波的衍射:波可以绕过障碍物继续传播的现象.
衍射是波的特性,一切波都能发生衍射.
产生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或与波长相差不多。
例如:声波的波长一般比院坡大,“隔堵有耳”就是声波衍射的例证.
说明:衍射是波特有的现象.
2.波的折射: 波从一种介质射入另一种介质时,传播方向发生改变的现象.
(1)波的折射中,波的频率不变,波速和波长都发生了改变.
(2)折射角:折射波的波线与界面法线的夹角.
(3)入射角i与折射角r的关系![]()
V1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的入射角,r为Ⅱ介质中的折射角.
1.波的反射:波遇到障碍物会返回来继续传播的现象.
(1)波面:沿波传播方向的波峰(或波谷)在同一时刻构成的面.
(2)波线:跟波面垂直的线,表示波的传播方向.
(3)入射波与反射波的方向关系.
①入射角:入射波的波线与平面法线的夹角.
② 反射角:反射波的波线与平面法线的夹角.
③在波的反射中,反射角等于入射角;反射波的波长、频率和波速都跟入射波的相同.
(4)特例:夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响.
(5)人耳能区分相差0.1 s以上的两个声音.
5.介质中质点的振动方向未定
在波的传播过程中,质点振动方向与传播方向联系,若某一质点振动方向未确定,则波的传播方向有两种,这样形成多解.
说明:波的对称性:波源的振动要带动它左、右相邻介质点的振动,波要向左、右两方向传播.对称性是指波在介质中左、右同时传播时,关于波源对称的左、右两质点振动情况完全相同.
[例3]一列在x轴上传播的简谐波,在xl=
10cm和x2=110cm处的两个质点的振动图象如图所示,则质点振动的周期为
s,这列简谐波的波长为
cm.
[解析]由两质点振动图象直接读出质点振动周期为 4s.由于没有说明波的传播方向,本题就有两种可能性:(1)波沿x轴的正方向传播.在t=0时,x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性,也就x2一 x1=(n十1/4)λ,λ=400/(1十4n)cm
(2)波沿x轴负方向传播.在t=0时.x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性……,x2一 x1=(n十3/4)λ,λ=400/(3+ 4n)cm
点评:由于波在媒质中传播具有周期性的特点,其波形图每经过一个周期将重复出现以前的波形图,所以由媒质中的质点的振动图象确定波长的值就不是唯一的(若要是唯一的,就得有两个前提:一个是确定波传播方向;一个是确定波长的范围).
[例4]如图实线是某时刻的波形图象,虚线是经过0.2s时的波形图象。求:
①波传播的可能距离 ②可能的周期(频率)
③可能的波速 ④若波速是35m/s,求波的传播方向
⑤若0.2s小于一个周期时,传播的距离、周期(频率)、波速。
解析:
①题中没给出波的传播方向,所以有两种可能:向左传播或向右传播。
向左传播时,传播的距离为x=nλ+3λ/4=(4n+3)m (n=0、1、2 …)
向右传播时,传播的距离为x=nλ+λ/4=(4n+1)m (n=0、1、2 …)
②向左传播时,传播的时间为t=nT+3T/4得:T=4t/(4n+3)=0.8 /(4n+3)(n=0、1、2 …)
向右传播时,传播的时间为t=nT+T/4得:T=4t/(4n+1)=0.8 /(4n+1) (n=0、1、2 …)
③计算波速,有两种方法。v=x/t 或v=λ/T
向左传播时,v=x/t=(4n+3)/0.2=(20n+15)m/s. 或v=λ/T=4 (4n+3)/0.8=(20n+15)m/s.(n=0、1、2 …)
向右传播时,v=x/t=(4n+1)/0.2=(20n+5)m/s. 或v=λ/T=4 (4n+1)/0.8=(20n+5)m/s. (n=0、1、2 …)
④若波速是35m/s,则波在0.2s内传播的距离为x=vt=35×0.2m=7m=1
λ,所以波向左传播。
⑤若0.2s小于一个周期,说明波在0.2s内传播的距离小于一个波长。则:
向左传播时,传播的距离x=3λ/4=3m;传播的时间t=3T/4得:周期T=0.267s;波速v=15m/s.向右传播时,传播的距离为λ/4=1m;传播的时间t=T/4得:周期T=0.8s;波速v =5m/s.
点评:做此类问题的选择题时,可用答案代入检验法。
[例5]如图所示,一列简谐横波在t1时刻的波形,如图甲所示,质点P在该时刻的振动速度为v,t2时刻质点P的振动速度与t1时刻的速度大小相等,方向相同;t3时刻质点P的速度与t1时刻的速度大小相等,方向相反.若t2-t1=t3-t2=0.2秒,求这列波的传播速度.
解析:从振动模型分析,若质点P从t1时刻开始向平衡位置方向振动,在一个周期内,从t1时刻到t2时刻,从t2时刻到t3时刻,对应的振动图象如图乙所示.考虑到振动的周期性,则有: t2-t1=(n+1/4)T n=0,1,2……
周期为:T=(t2一t1)/(n十1/4) n=0,1,2……
由公式:v=λ/T 得出速度v的通解为: v=20(n+l/4) n=0,1,2……方向向左.
若质点 P从 t1时刻开始背离平衡位置方向振动,在一个周期内,从t1时刻到t2时刻,从t2时刻到t3时刻,对应的振动图象如图丙所示.考虑到振动的周期性,则有:
t2-t1=(n+3/4)T n=0,1,2……
周期为:T=(t2一t1)/(n十3/4) n=0,1,2……
由公式:v=λ/T 得出速度v的通解为: v=20(n+3/4) n=0,1,2……方向向右.
答案:v=20(n+l/4)(n=0,1,2……) 方向向左.
或v= 20( n+ 3/4)( n= 0,1,2,……)方向向右
[例6]已知在t1时刻简谐横波的波形如图中实线所示;在时刻t2该波的波形如图中虚线所示。t2-t1
= 0.02s来求:⑴该波可能的传播速度。⑵若已知T< t2-t1<2T,且图中P质点在t1时刻的瞬时速度方向向上,求可能的波速。⑶若0.01s<T<0.02s,且从t1时刻起,图中Q质点比R质点先回到平衡位置,求可能的波速。
解:⑴如果这列简谐横波是向右传播的,在t2-t1内波形向右匀速传播了
,所以波速
=100(3n+1)m/s (n=0,1,2,…);同理可得若该波是向左传播的,可能的波速v=100(3n+2)m/s (n=0,1,2,…)
⑵P质点速度向上,说明波向左传播,T< t2-t1 <2T,说明这段时间内波只可能是向左传播了5/3个波长,所以速度是唯一的:v=500m/s
⑶“Q比R先回到平衡位置”,说明波只能是向右传播的,而0.01s<T<0.02s,也就是T<0.02s<2T,所以这段时间内波只可能向右传播了4/3个波长,解也是唯一的:v=400m/s
[例7]一列横波沿直线在空间传播,某一时刻直线上相距为d的M、N两点均处在平衡位置,且M、N之间仅有一个波峰,若经过时间t,N质点恰好到达波峰位置,则该列波可能的波速是多少?
分析与解:本题没有给定波的传播方向,仅告诉我们在某一时刻M、N两点均处在平衡位置,且M、N之间仅有一个波峰.由此我们可以推想,处在直线MN上的各个质点在该时刻相对平衡位置的位移可能会有以下四种情况,即波的图像有以下四种图形(如图中A、B、C、D图,各图中均为左端为M,右端为N):
若波的传播方向由M到N,那么:
在A图中,经过时间t,N恰好到达波峰,说明时间t内波向右前进的距离
,且
,所以波速
.
在B图中,经过时间t,波峰传到N点,则波在时间t内向右前进的距离
,且
,所以波速
.
在C图中,经过时间t,波向右前进的距离
,且
,所以波速
.
在D图中,经过时间t,波向右前进的距离
,且
,所以波速
.
若波的传播方向从N到M,那么:
在A图中,质点N此时要向下振动,经过时间t,N到达波峰,则时间
,在时间t内波向左前进的距离
,所以波速
.
在B图中,经过时间t,
N到达波峰,则时间
,在此时间内波向左前进的距离
,所以波速
.
在C图中,波在时间t内向左前进的距离
,且
,所以波速
.
在D图中,质点N经过
变为波峰,所以
,在时间t内波向左前进的距离
,所以波速
.
所以该列波可能的波速有五种
、
、
、
、
.
其实上述解决问题的方法过于程序化,如果能够判断出八种情况下该时刻波形图上的波峰在传播方向上到N点的距离S,波速v就等于
.例如:最后一种情况中,波峰在传播方向上到N点的距离
,所以波速
.其它情况读者可自行解决.
规律方法
试题展示
波的现象与声波
知识简析 一、波的现象
4.介质中两质点间的距离与波长关系未定
在波的传播方向上,如果两个质点间的距离不确定,就会形成多解,解题时若不能联想到所有可能情况,易出现漏解.
3.波的双向性
双向性是指波沿正负方向传播时,若正、负两方向的传播时间之和等于周期的整数倍,则沿正负两方向传播的某一时刻波形相同.
2.波的时间的周期性
在x轴上同一个给定的质点,在t+nT时刻的振动情况与它在t时刻的振动情况(位移、速度、加速度等)相同.因此,在t时刻的波形,在t+nT时刻会多次重复出现.这就是机械波的时间的周期性.
波的时间的周期性,表明波在传播过程中,经过整数倍周期时,其波的图象相同.
波动图象的多解涉及:(1)波的空间的周期性;(2)波的时间的周期性;(3)波的双向性;(4)介质中两质点间距离与波长关系未定;(5)介质中质点的振动方向未定.
1.波的空间的周期性
沿波的传播方向,在x轴上任取一点P(x),如图所示,P点的振动完全重复波源O的振动,只是时间上比O点要落后Δt,且Δt =x/v=xT0/λ.在同一波线上,凡坐标与P点坐标x之差为波长整数倍的许多质点,在同一时刻t的位移都与坐标为λ的质点的振动位移相同,其振动速度、加速度也与之相同,或者说它们的振动“相貌”完全相同.因此,在同一波线上,某一振动“相貌”势必会不断重复出现,这就是机械波的空间的周期性.
空间周期性说明,相距为波长整数倍的多个质点振动情况完全相同.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com