∴
,
∴∠BCD=90°,
设对称轴交x轴于点E,过C作CM⊥DE,交抛物线于点M,垂足为F,在Rt△DCF中,
∵CF=DF=1,
∴∠CDF=45°,
由抛物线对称性可知,∠CDM=2×45°=90°,点坐标M为(2,3),
∴DM∥BC,
∴四边形BCDM为直角梯形,
由∠BCD=90°及题意可知,
以BC为一底时,顶点M在抛物线上的直角梯形只有上述一种情况;
以CD为一底或以BD为一底,且顶点M在抛物线上的直角梯形均不存在。
得CB=
,CD=
,BD=
,
∴符合条件的点P坐标为
或(2,3)。
⑶由B(3,0),C(0,3),D(1,4),根据勾股定理,
∴
,即点P坐标为
。
②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3)。
解得
,
,应舍去。∴
。
又P点(x,y)在抛物线上,∴
,即![]()
得
,即y=4-x。
由
得,D点坐标为(1,4),对称轴为x=1。
①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理,
∴抛物线的解析式为![]()
⑵存在。
根据题意,得
,解得![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com