5.(★★★★★)有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.
(1)全体排成一行,其中甲只能在中间或者两边位置.
(2)全体排成一行,其中甲不在最左边,乙不在最右边.
(3)全体排成一行,其中男生必须排在一起.
(4)全体排成一行,男、女各不相邻.
(5)全体排成一行,男生不能排在一起.
(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.
(7)排成前后二排,前排3人,后排4人.
(8)全体排成一行,甲、乙两人中间必须有3人.
4.(★★★★)二次函数y=ax2+bx+c的系数a、b、c,在集合{-3,-2,-1,0,1,2,3,4}中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?
3.(★★★★★)某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?
2.(★★★★★)圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为_________.
1.(★★★★)从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条(用数值表示).
因而,n是满足
最小整数。
因此n是满足
的最小整数,而![]()
所以
,这与n是满足![]()
的最大整数矛盾。
若
,则![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com