(2)设抛物线的顶点为C,抛物线上一点D的坐标为
,过点B、D的直线与抛物线的对称轴交于点E。问:是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若在BD上存在一点P,使得直线AP将四边形ACBD分成了面积相等的两部分,请你求出此时点P的坐标。
25.已知:在平面直角坐标系xOy中,二次函数
的图象与x轴交于A、B两点,点A在点B的左侧,若抛物线的对称轴为x=1,点A的坐标为
。
(1)求这个二次函数的解析式;
24.如图,直角梯形ABCD中,AD//BC,∠B=90°,AB=
。
(1)求AD的长;
(2)求y与x之间的函数关系式,并求出当x为何值时,y有最大值?最大值是多少?
(3)在线段AB上是否存在点P,使得△PCD是直角三角形?若存在,求出x的值;若不存在,请说明理由。
![]()
图4
![]()
图2
(2)如图3,在△ABC中,如果∠BAC不是直角,而(1)中的其他条件不变,若BE=CF的结论仍然成立,请写出△AEF必须满足的条件,并加以证明。
![]()
图1
(1)如图2,在Rt△ABC中,∠BAC=90°,AB>AC,点D是BC边中点,过D作射线交AB于E,交CA延长线于F,请猜想∠F等于多少度时,BE=CF(直接写出结果,不必证明)。
23.如图1,点P是线段MN的中点,请你利用该图形画一对以点P为对称中心的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:
![]()
五、解答题(本题共23分,第23题7分,第24题8分,第25题8分)
22.如图,在⊙O中,弦AB与半径相等,连结OB并延长,使BC=OB。
(1)试判断直线AC与⊙O的位置关系,并证明你的结论;
(2)请你在⊙O上找到一个点D,使AD=AC(完成作图,证明你的结论),并求∠ABD的度数。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com