精英家教网 > 初中数学 > 题目详情

阅读材料:如图1,若点P是⊙O外的一点,线段PO交⊙O于点A,则PA长是点P与⊙O上各点之间的最短距离.

证明:延长PO交⊙O于点B,显然PB>PA.

如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.

∵PO<PC+OC,

且PO=PA+OA,OA=OC,

∴PA<PC

∴PA 长是点P与⊙O上各点之间的最短距离.

由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.

(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 上的一个动点,连接AP,则AP长的最小值是   

(2)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,①求线段A’M的长度; ②求线段A′C长的最小值.

(1)(2)①1② 【解析】试题分析:(1)由圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差可得结论; (2)①利用翻折的性质和菱形的性质可得出结论; ②利用①的结论易得点A′在以点M为圆心,1为半径的圆上,再利用菱形的性质和锐角三角函数得DH,MH,易得CH,由勾股定理得CM,求得A′C. 解:(1)连接AO与⊙O相交于点P,如图①,由已知定理可知, ...
练习册系列答案
相关习题

科目:初中数学 来源:江苏省2017-2018学年八年级上学期期末考试数学试卷 题型:解答题

如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.

(1) 求这个梯子顶端A与地面的距离.

(2) 如果梯子顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗? 为什么?

(1)12m;(2)BD=-5>4m,不等于. 【解析】【解析】 (1)∵AO⊥DO (2)滑动不等于4 m∵AC=4m ∴AO=……2分 ∴OC=AO-AC="8m " ……5分 =="12m " ……4分 ∴OD= ∴梯子顶端距地面12m高。 =…7分 ∴BD=OD-OB= ∴滑动不等于4 m。 ……8分。

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市下城区安吉路良渚实验初三上期中数学试卷 题型:单选题

在平面直角坐标系中,若⊙是以原点为圆心, 为半径的圆,则点在( ).

A. ⊙内 B. ⊙外 C. ⊙上 D. 不能确定

A 【解析】∵点, ∴MO=<2, ∴点M在⊙O内, 故选:A.

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市余杭区英特外国语学校2017-2018学年八年级上学期期中数学试卷 题型:填空题

直角三角形的两条边长度分别是,则第三边的平方是__________.

100或28. 【解析】①当6与8均为直角边时,则第三边的平方为62+82=100; ②当8为斜边,6为直角边时,则第三边的平方为82-62=28. 故答案为100或28.

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市余杭区英特外国语学校2017-2018学年八年级上学期期中数学试卷 题型:单选题

等腰中, .两腰高线交于一点,则描述的关系最准确的是( ).

A. B. C. 垂直 D. 垂直平分

D 【解析】如图,设BD,CE分别为AC,AB的高线,则∠BEC=∠CDB=90°, 在△ABC中,AB=AC,故∠ABC=∠ACB, 在△BEC与△CDB中,∠BEC=∠CDB,∠ABC=∠ACB,BC=CB, 所以△BEC≌△CDB, 所以BE=CD, 所以AE=AD,又AO=AO 所以△AEO≌△ADO, 则∠EAO=∠DAO,即AO为∠BAC...

查看答案和解析>>

科目:初中数学 来源:江苏省连云港市灌南县私立新知双语学校2018届九年级(上)期中数学模拟试卷 题型:解答题

已知一个几何体的三视图如图,根据图示的数据计算该几何体的全面积及侧面展开图的圆心角(结果保留π).

216° 【解析】试题分析:根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出全面积;再根据圆心角的计算公式进行计算即可求出侧面展开图的圆心角的度数. 解:∵如图所示可知,圆锥的高为4,底面圆的直径为6, ∴圆锥的母线为: , ∴根据圆锥的侧面积公式:πrl=π×3×5=15π, 底面圆的面积为:πr2=9π, ∴该几何体的全面积为24π. ...

查看答案和解析>>

科目:初中数学 来源:江苏省连云港市灌南县私立新知双语学校2018届九年级(上)期中数学模拟试卷 题型:填空题

如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=_____.

1 【解析】试题分析:首先求出AB的长为5,再连圆心和各切点,利用切线长定理用半径表示AF=AD=3﹣r,和BF="BE" =4﹣r,而它们的和等于AB,得到关于r的方程4﹣r+3﹣r=5,求得r=1.即△ABC的内切圆的半径为 1.

查看答案和解析>>

科目:初中数学 来源:湖北省宜昌市2018届九年级(上)期中数学试卷 题型:解答题

已知关于x的一元二次方程mx2﹣(m+2)x+2=0.

(1)证明:不论m为何值时,方程总有实数根;

(2)m为何整数时,方程有两个不相等的正整数根.

(1)证明见解析;(2)m=1. 【解析】试题分析:(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可; (2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m的值. (1)证明:△=(m+2)2﹣8m =m2﹣4m+4 =(m﹣2)2, ∵不论m为何值时,(m﹣2)2≥0, ∴△≥0, ∴方程总有实数根; (2)【...

查看答案和解析>>

科目:初中数学 来源:浙江杭州下城区观成中学2018届九年级上学期期中数学试卷 题型:单选题

已知,则的值为(  )

A. B. C. D.

B 【解析】∵,即,∴. 故选.

查看答案和解析>>

同步练习册答案