精英家教网 > 初中数学 > 题目详情

A,B两点在数轴上的位置如图所示,其中点A对应的有理数为-4,且AB=10.动点P从点A出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒(t>0).

(1)当t=1时,AP的长为_________,点P表示的有理数为______;

(2)当PB=2时,求t的值;

(3)M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

(1)2,-2;(2)4或6;(3)长度不变且长为5. 【解析】试题分析:(1)根据点P的运动速度,即可求出;(2)当PB=2时,要分两种情况讨论,点P在点B的左侧或是右侧;(3)利用中点的定义可以求出线段的长度不变. 试题解析:(1)因为点P的运动速度每秒2个单位长度,所以当t=1时,AP的长为2,因为点A对应的有理数为-4,AP=2,所以点P表示的有理数为-2;(2)当PB=2时,...
练习册系列答案
相关习题

科目:初中数学 来源:2017年安徽省合肥市高新区梦园学校中考数学模拟试卷 题型:填空题

如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为_____.

2 【解析】根据切线长定理,AP=AC,BP=BD,所以BP=5-3=2,所以BD=2. 故答案为2.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年第一学期期末复习备考之精准复习模拟题七年级北师大版数学试卷(C卷) 题型:解答题

如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3s后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/s).

(1)求出点A、点B运动的速度,并在数轴上标出A,B两点从原点出发运动3s时的位置;

(2)若A,B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?

(3)当A,B两点从(2)中的位置继续以原来的速度沿数轴向左运动的同时,另一点C从原点位置也向点A运动,当遇到点A后,立即返回向点B运动,遇到点B后又立即返回向点A运动,如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以8个单位长度/s的速度匀速运动,则点C从开始运动到停止运动,行驶的路程是多少个单位长度?

(1)点A的速度为每秒1个单位长度,则点B的速度为每秒5个单位长度,图见解析; (2)2秒时,原点恰好处在点A、点B的正中间; (3)C行驶的路程为20个单位长度. 【解析】试题分析:(1)设点A的速度为每秒t个单位,则点B的速度为每秒5t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可; (2)设x秒时原点恰好处在点A、点B的正中间,根据两点离原点的距离相等建立方...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年第一学期期末复习备考之精准复习模拟题七年级北师大版数学试卷(C卷) 题型:单选题

已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为(  )

A. 6cm B. 9cm C. 3cm或6cm D. 1cm或9cm

D 【解析】试题分析:有两种情况:①点C在AB上,②点C在AB的延长线上,这两种情况根据线段的中点的性质,可得BM、BN的长,再利用线段的和、差即可得出答案. 【解析】 (1)点C在线段AB上,如: 点M是线段AB的中点,点N是线段BC的中点, MB=AB=5,BN=CB=4, MN=BM-BN=5-4=1cm; (2)点C在...

查看答案和解析>>

科目:初中数学 来源:2017-2018学年第一学期期末复习备考之精准复习模拟题七年级北师大版数学试卷(C卷) 题型:单选题

如图所示图形中,不是正方体的展开图的是(  )

A. B.

C. D.

C 【解析】选项A,B,D折叠后都可以围成正方体, 而C折叠后折叠后第二行和第三行两个面无法折起来,而且下边没有面,不能折成正方体。 故选C.

查看答案和解析>>

科目:初中数学 来源:2017-2018学年第一学期期末复习备考之精准复习模拟题七年级北师大版数学试卷(A卷) 题型:填空题

若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x=_____.

【解析】根据题意得:k-2≠0且|k-1|=1, 解得:k=0. 把k=0代入方程得-2x+1=0, 解得:x= ∴k+x=. 故答案是: .

查看答案和解析>>

科目:初中数学 来源:2017-2018学年第一学期期末复习备考之精准复习模拟题七年级北师大版数学试卷(A卷) 题型:单选题

如图,直线AB,CD相交于点O,射线OM平分∠AOC,∠MON=90°,若∠AOM=35°,则∠CON的度数为( )

A. 35° B. 45° C. 55° D. 65°

C 【解析】∵射线OM平分∠AOC,∠AOM=35°, ∴∠MOC=35°. ∵∠MON=90°. ∴∠CON=∠MON-∠MOC=90°-35°=55°. 故选C.

查看答案和解析>>

科目:初中数学 来源:黄金30题系列 八年级数学 小题好拿分 题型:填空题

化简=______.

1 【解析】试题分析:原式===1.故答案为:1.

查看答案和解析>>

科目:初中数学 来源:安徽省合肥市2016-17学年度第一学期期末教学质量检测七年级数学试卷 题型:解答题

如图,时钟是我们常见的生活必需品,其中蕴含着许多数学知识.

(1)我们知道,分针和时针转动一周都是 度,分针转动一周是 分钟,时针转动一周有12小时,等于720分钟;所以,分针每分钟转动 度,时针每分钟转动 度.

(2)从5:00到5:30,分针与时针各转动了多少度?

(3)请你用方程知识解释:从1:00开始,在1:00到2:00之间,是否存在某个时刻,时针与分针在同一条直线上?若不存在,说明理由;若存在,求出从1:00开始经过多长时间,时针与分针在同一条直线上.

(1)360,60,6,0.5.(2)15°;(3)经过分钟或分钟时针与分针在同一条直线上. 【解析】试题分析:(1)利用钟表盘的特征解答.表盘一共被分成60个小格,每一个小格所对角的度数是6°; (2)从5:00到5:30,分针转动了30个格,时针转动了2.5个格,即可求解; (3)时针与分针在同一条直线上,分两种情况:①分针与时针重合;②分针与时针成180°, 设出未知...

查看答案和解析>>

同步练习册答案