精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中, 两点的坐标分别为,连接,若以点为顶点的三角形是等腰直角三角形,则点坐标为__________.

, , , , , 【解析】∵A、B两点的坐标分别为(-4,0)、(0,2) ∴OA=4,OB=2. (1)如图,当∠APB=90°时,作PE⊥OA于点E, 易证△APE≌△BPD,则PD=PE=OE=OD,AE=BD, 设PD= , 则,解得: , ∴此时点P的坐标为(-3,3); 同理可得:点P1的坐标为(-1,-1). (2)如图2,当∠...
练习册系列答案
相关习题

科目:初中数学 来源:江西省景德镇市2017-2018学年八年级上学期期末质量检测数学试卷 题型:填空题

在Rt△ABC中,a、b均为直角边且其长度为相邻的两个整数,若

则该直角三角形斜边上的高的长度为__________;

【解析】试题解析: 即三角形两直角边为3、4, 三角形的斜边 所以这个直角三角形斜边上的高的长度 故答案为:

查看答案和解析>>

科目:初中数学 来源:湖北省十堰市丹江口市2018届九年级(上)期中数学试卷 题型:解答题

如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,

(1)求证:△ABC是等边三角形;

(2)求圆心O到BC的距离OD.

(1)证明见解析(2)4 【解析】【解析】 (1)证明:∵∠APC和∠ABC是同弧所对的圆周角,∴∠APC=∠ABC。 又∵在△ABC中,∠BAC=∠APC=60°,∴∠ABC=60°。 ∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°。 ∴△ABC是等边三角形。 (2)连接OB, ∵△ABC为等边三角形,⊙O为其外接圆, ∴O...

查看答案和解析>>

科目:初中数学 来源:湖北省十堰市丹江口市2018届九年级(上)期中数学试卷 题型:单选题

如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )

A. 25° B. 50° C. 60° D. 80°

B 【解析】试题分析:先根据OA=OB,∠BAO=25°得出∠B=25°,再由平行线的性质得出∠B=∠CAB=25°,根据圆周角定理即可得出结论. ∵OA=OB,∠BAO=25°,∴∠B=25°. ∵AC∥OB,∴∠B=∠CAB=25°,∴∠BOC=2∠CAB=50°.故选B.

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市白马湖2017-2018学年八年级上学期期中数学试卷(含解析) 题型:解答题

如图, 平分,求的面积.

1.5 【解析】试题分析: 如图,过D点作DE⊥AB交AB于点E,由已知条件可证△AED≌△ACD,从而可得DE=DC=,AE=AC;在Rt△BDE中,先求得BD,再由勾股定理可求得BE,设AE= ,则AC= ,同时可由AB=AE+BE表达出AB,在Rt△ABC中由勾股定理可建立关于“”的方程,解方程即可求得“”的值,从而可得AC的长,由AC和BC的长即可求出△ABC的面积了. ...

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市白马湖2017-2018学年八年级上学期期中数学试卷(含解析) 题型:单选题

已知中, .如图,将进行折叠,使点落在线段上(包括点和点),设点的落点为,折痕为,当是等腰三角形时,点可能的位置共有( ).

A. 种 B. 种 C. 种 D.

B 【解析】(1)当点D与C重合时, ∵AC=BC,AE=DE(即CE),AF=DF(即CF), ∴此时△AFC(即△AFD)是等腰直角三角形,点E是斜边AC的中点, ∴EF=DE, ∴△EDF为等腰三角形. (2)当点D与B点重合时,点C与E重合, ∵AC=BC,AF=DF(即BF), ∴此时EF=AB=DF(即BF), ∴△DEF是等腰三角...

查看答案和解析>>

科目:初中数学 来源:浙江省杭州市白马湖2017-2018学年八年级上学期期中数学试卷(含解析) 题型:单选题

已知中, ,则它的三条边之比为( ).

A. B. C. D.

B 【解析】∵△ABC中,∠A ∠B=∠C, ∴∠B=2∠A,∠C=3∠A, 又∵∠A+∠B+∠C=180°, ∴∠A+2∠A+3∠A=180°,解得∠A=30°, ∴∠B=60°,∠C=90°, 设BC= ,则AB=,由勾股定理可得:AC= , ∴△ABC的三边之比为:BC:AC:AB=. 故选B.

查看答案和解析>>

科目:初中数学 来源:广东省广州市番禺区2017-2018学年八年级上学期期末考试数学试卷 题型:单选题

2013年,我国上海和安徽首先发现“H7N9”新型禽流感病毒,此病毒颗粒呈多边形,其中球形病毒的最大直径为米,这一直径用科学计数法表示为____米.

; 【解析】试题分析:0.000 000 12=1.2×10-7, 故答案为:1.2×10-7.

查看答案和解析>>

科目:初中数学 来源:江苏省盐城市2017届九年级上学期期末考试数学试卷 题型:解答题

如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.

(1)求证:CD是⊙O的切线;

(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.

(1)证明见解析;(2)BE的长是 【解析】试题分析:(1)连接OC,根据条件先证明OC∥AD,然后证出OC⊥CD即可;(2)先利用勾股定理求出AE的长,再根据条件证明△ECO∽△EDA,然后利用对应边成比例求出OC的长,再根据BE=AE﹣2OC计算即可. 试题解析:(1)证明:连接OC, ∵AC平分∠DAB, ∴∠DAC=∠CAB, ∵OC=OA, ∴∠OAC...

查看答案和解析>>

同步练习册答案