二次函数y=x2﹣2x+6的最小值是____.
5 【解析】试题分析:y=x2﹣2x+6=x2﹣2x+1+5 =(x﹣1)2+5, 可见,二次函数的最小值为5.科目:初中数学 来源:湖南省2017-2018学年八年级数学上期末复习检测数学试卷 题型:填空题
将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是________.那么将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是________.
y=2x+1 y=2x﹣10 【解析】【解析】 将直线y=2x﹣4向上平移5个单位后,所得直线的表达式是y=2x﹣4+5=2x+1.将直线y=2x﹣4沿x轴向右平移3个单位得到的直线方程是y=2(x-3)﹣4﹣3=2x﹣10; 故答案为:y=2x+1;y=2x﹣10.查看答案和解析>>
科目:初中数学 来源:2017年江苏省苏州市中考数学三模试卷 题型:填空题
不等式1﹣3(x﹣1)<8﹣x的负整数解是_____.
-1 【解析】试题解析:1?3(x?1)<8?x, 去括号得:1?3x+3<8?x, 移项得:?3x+x<8?1?3, 合并同类项得:?2x<4, 把x的系数化为1得:x>?2, 故负整数解为:?1. 故答案为:?1.查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:解答题
如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.
![]()
(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.
(1)证明见解析;(2) AD=6. 【解析】试题分析:(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证; (2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE...查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:填空题
一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为 .
160°. 【解析】试题分析:∵圆锥的底面直径是80cm, ∴圆锥的侧面展开扇形的弧长为:πd=80π, ∵母线长90cm, ∴圆锥的侧面展开扇形的面积为: lr=×80π×90=3600π, ∴=3600π, 解得:n=160.查看答案和解析>>
科目:初中数学 来源:福建省建瓯市2018届九年级数学上册期末测试卷 题型:单选题
从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称图形的卡片的概率是( )
![]()
A.
B.
C.
D. 1
查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:解答题
如图①,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式.
(3)若边EF与边AC交于点Q,连结PQ,如图②.
①当PQ将△PEF的面积分成1:2两部分时,求AP的长.
②直接写出PQ的垂直平分线经过△ABC的顶点时t的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2017年吉林省长春市中考数学模拟试卷 题型:单选题
如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=50°,则∠CAD的大小为( )
![]()
A. 50° B. 65° C. 80° D. 60°
B 【解析】∵在△ABC中,AB=AC,∠1=50°, ∴∠C=∠B=, 又∵AD∥BC, ∴∠CAD=∠C=65°. 故选B.查看答案和解析>>
科目:初中数学 来源:江苏省苏州市2017年中考数学二模试卷 题型:填空题
如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 (结果保留π).
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com