分析 延长FD到点G,过C作CG∥AB交FD的延长线于点M,可证明△EDF≌△CMD,可得CM=EF=AC,进一步得到结论;
解答 证明:
延长FD到点G,过C作CG∥AB交FD的延长线于点M,
则EF∥MC,
∴∠BAD=∠EFD=∠M,
在△EDF和△CMD中,$\left\{\begin{array}{l}{∠EFD=∠M}&{\;}\\{∠EDF=∠MDC}&{\;}\\{ED=DC}&{\;}\end{array}\right.$,
∴△EDF≌△CMD(AAS),
∴MC=EF=AC,
∴∠M=∠CAD,
∴∠BAD=∠CAD.
点评 本题考查了全等三角形的判定于性质、平行线的性质、等腰三角形的性质;证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com