精英家教网 > 初中数学 > 题目详情
15.已知二次函数y=x2-2x-3
(1)请求出它的顶点坐标、与坐标轴的交点坐标,并利用五点法在直角坐标系中画出示意图;
(2)如果A(x1,y1),B(x2,y2)是(1)中图象上的两点,且x1<x2<1,请直接写出y1、y2的大小关系.

分析 (1)根据顶点式求得顶点坐标,令x=0,求得与y轴的交点,令y=0,求得与x轴的坐标,再在对称轴的两侧取两组对称点,列表,然后描点、连线即可.
(2)根据二次函数的性质即可求得y1、y2的大小关系.

解答 解:(1)由y=x2-2x-3=(x-1)2-4可知顶点坐标为(1,-4),
令x=0,则y=-3,
∴与y轴交点为(0,-3),
令y=0,则0=x2-2x-3,解得x1=-1,x2=3,
∴与x轴交点为(-1,0),(3,0).
列表:

x-10 123
y=x2-2x-30-3-4-30
描点、连线:

(2)∵二次函数y=x2-2x-3的对称轴为x=1,在对称轴的右边y随x的增大而增大,
∴x1<x2<1时,y1<y2

点评 本题考查了二次函数的图象,二次函数的性质,二次函数图象上点的坐标特征,找到顶点及对称轴,根据对称轴取点是画图的关键一步.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.如图,在△ABC中,AC=BC,∠C=90°,直线l⊥AB,直线l从点A开始向右作匀速平行移动,设直线l移动的时间为t,扫过△ABC的面积(图中阴影部分)为S,则下列各图中,能够反映S关于t的函数关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C在OP上,且BC=PC.
(1)求证:直线BC是⊙O的切线;
(2)若OA=3,AB=2,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,AB是⊙O的直径,C是$\widehat{AB}$的中点,延长AC至点D,使AC=CD,DB的延长线交CE的延长线于点F,AF交⊙O于点M,连接BM.
(1)求证:DB是⊙O的切线;
(2)若⊙O的半径为2,E是OB的中点,求BM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知四边形ABCD是矩形,BF=1,FC=3,沿EF,AF折叠,点C落在C1处,点B落在FC1边上的B1,求AB=$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,△ABC是正方形网格中的格点三角形(顶点在格点上),请分别在图甲,图乙的正方形网格内按下列要求画一个格点三角形.
(1)在图甲中,以AC为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等;
(2)在图乙中,以AB为边画直角三角形,使它的一个锐角等于∠A或∠B,且与△ABC不全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:△ABC中,∠C=90°,AC=BC,点M,N分别在AC,BC上,将△ABC沿MN折叠,顶点C恰好落在斜边上的P点.

(1)如图1,当MN∥AB时,①求证:AM=MC;②$\frac{PA}{PB}=\frac{CM}{CN}$;
(2)如图2,当MN与AB不平行时,$\frac{PA}{PB}=\frac{CM}{CN}$还成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查.下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)小明共抽取50名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是115.2°;
(4)若全校共有2130名学生,请你估算“其他”部分的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列图形中,既是轴对称图形,又是中心对称图形的是(  )
A.
等边三角形
B.
平行四边形
C.
矩形
D.
正五边形

查看答案和解析>>

同步练习册答案