精英家教网 > 初中数学 > 题目详情
17.计算:(2015-π)0+(-$\frac{1}{3}$)-1+|$\sqrt{3}$-1|-3tan30°+6$\sqrt{\frac{1}{3}}$.

分析 原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,第四项利用特殊角的三角函数值计算,最后一项利用二次根式性质化简,计算即可得到结果.

解答 解:原式=1-3+$\sqrt{3}$-1-$\sqrt{3}$+2$\sqrt{3}$=2$\sqrt{3}$-3.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,且∠BAC=∠CAD,过点C作CE⊥AD,垂足为点E.
(1)试判断CE与⊙O的位置关系,并说明理由;
(2)若AB=5,AC=4,求CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=$\frac{2}{3}$x2+bx+c经过点B,且顶点在直线x=$\frac{5}{2}$上.
(1)求抛物线的解析式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E.当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,已知在对称轴上存在一点P,使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,点M从O点出发,在线段OB上以每秒2个OD长度的速度向B点运动,同时点Q 从O点出发,在线段OD上以每秒1个单位长度的速度向D点运动,其中一个点到达终点时,另一个点也停止运动,求运动多少秒使△PMN的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.一个数的相反数是3,这个数是(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.当0<x<1时,x,$\frac{1}{x}$,x2的大小顺序是(  )
A.$\frac{1}{x}$<x<x2B.x<x2<$\frac{1}{x}$C.x2<x<$\frac{1}{x}$D.$\frac{1}{x}$<x2<x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB切⊙O于点B,OA=2$\sqrt{3}$,∠BAO=60°,弦BC∥OA,则$\widehat{BC}$的长为2π(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是(  )
A.样本中位数是200元
B.样本容量是20
C.该企业员工捐款金额的极差是450元
D.该企业员工最大捐款金额是500元

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,∠POA=∠POB,PD⊥OA于点D,PE⊥OB于点E,若OP=26,PE=10,则OD的长为(  )
A.12B.18C.20D.24

查看答案和解析>>

同步练习册答案