精英家教网 > 初中数学 > 题目详情
4.如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE等于弧AB,BE分别交AD、AC于点F、G.
(1)判断△FAG的形状,并说明理由;
(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.

分析 (1)首先根据圆周角定理及垂直的定义得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,从而得到∠BAD=∠C,然后利用等弧对等角等知识得到AF=BF,从而证得FA=FG,判定等腰三角形;
(2)成立,证明方法同(1).

解答 解:(1)等腰三角形;
∵BC为直径,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵$\widehat{AE}=\widehat{AB}$,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形;
(2)成立;
∵BC为直径,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵$\widehat{AE}=\widehat{AB}$,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.

点评 本题考查了圆的综合知识及垂径定理、勾股定理等知识,解题的过程中注意等腰三角形的判定与圆的知识的结合,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.实数m,且m-$\frac{1}{m}$=3,则m2-$\frac{1}{{m}^{2}}$=$±3\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知点A(-3,-4)和B(-2,1),试在y轴求一点P,使PA与PB的和最小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在等边△ABC中,AB=8cm,AD⊥BC,DE⊥AB,DF⊥AC,垂足分别是D,E,F,则BE=2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O相交于点E,F时,若∠DAE=18°,求∠BAF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.若1-$\frac{4}{x}$+$\frac{4}{{x}^{2}}$=9,则$\frac{2}{x}$的值是(  )
A.4B.-2C.4或-2D.±3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的$\frac{1}{3}$,这时乙队加入,两队还需同时施工15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算题:
(1)-18+6+7-5
(2)(-2)3×(1-$\frac{1}{4}$)-(2-5)
(3)-$\frac{3}{4}$[-32×(-$\frac{2}{3}$)2-2].

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.不等式组$\left\{\begin{array}{l}x+1<2\\-2x<2\end{array}\right.$的解集为-1<x<1.

查看答案和解析>>

同步练习册答案