精英家教网 > 初中数学 > 题目详情
13.已知点P是函数y=$\sqrt{3}$|x+1|图象上的点,点O(0,0),A(1,$\sqrt{3}$),求△OAP的面积S与x的函数关系式.

分析 分两种情况①当x>-1时,y=$\sqrt{3}$x+$\sqrt{3}$,设P(x,$\sqrt{3}$x+$\sqrt{3}$),作AM⊥y轴于M,PN⊥y轴于N,根据S=S梯形ANMP-S△POM-S△PON即可求得;②当x<-1时,y=-$\sqrt{3}$x-$\sqrt{3}$,设P(x,-$\sqrt{3}$x-$\sqrt{3}$),作AN⊥x轴于N,PM⊥x轴于M,根据S=S梯形ANMP-S△POM-S△PON即可求得.

解答 解:∵点P是函数y=$\sqrt{3}$|x+1|图象上的点,
当x>-1时,y=$\sqrt{3}$x+$\sqrt{3}$,
设P(x,$\sqrt{3}$x+$\sqrt{3}$),如图1,

作AM⊥y轴于M,PN⊥y轴于N,
∴S=S梯形AMNP+S△AOM-S△PON
=$\frac{1}{2}$(x+1)($\sqrt{3}$x+$\sqrt{3}$-$\sqrt{3}$)+$\frac{1}{2}$×$1×\sqrt{3}$-$\frac{1}{2}$x($\sqrt{3}$x+$\sqrt{3}$)
=$\frac{\sqrt{3}}{2}$.
当x<-1时,y=-$\sqrt{3}$x-$\sqrt{3}$,
设P(x,-$\sqrt{3}$x-$\sqrt{3}$),如图2,

作AN⊥x轴于N,PM⊥x轴于M,
∴S=S梯形ANMP-S△POM-S△PON
=$\frac{1}{2}$(-$\sqrt{3}$x-$\sqrt{3}$+$\sqrt{3}$)(-x+1)-$\frac{1}{2}$×(-x)(-$\sqrt{3}$x-$\sqrt{3}$)-$\frac{1}{2}$×$1×\sqrt{3}$
=-$\sqrt{3}x$-$\frac{\sqrt{3}}{2}$(x<-1).
综上,△OAP的面积S与x的函数关系式为:S=$\left\{\begin{array}{l}{\frac{\sqrt{3}}{2}(x>-1)}\\{-\sqrt{3}x-\frac{\sqrt{3}}{2}(x<-1)}\end{array}\right.$.

点评 本题考查了一次函数图象上点的坐标特征,根据题意得出函数y=$\sqrt{3}$|x+1|为y=$\left\{\begin{array}{l}{y=\sqrt{3}x+\sqrt{3}(x>-1)}\\{y=-\sqrt{3}x-\sqrt{3}(x<-1)}\end{array}\right.$,分类讨论的思想是本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.1989年以来,省委省政府、西宁市委市政府相继启动实施南北山绿化工程,经过26年的绿化建设,绿化面积、森林覆盖率得到明显提高,城市生态环境得到明显改善,截止2015年两山形成森林209300亩,将209300用科学记数法表示为2.093×105

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图所示,在△ABC中,∠CAB=70°,将△ABC绕点A旋转到△A′B′C′的位置,使得C′A⊥AB,则∠BAB′=(  )
A.10°B.20°C.30°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图所示,过等边△ABC的顶点A,B,C依次作AB,BC,CA的垂线围成△A1B1C1,再过△A1B1C1的顶点A1、B1、C1依次作A1B1、B1C1、A1C1的垂线围成△A2B2C2…依照此规律直至构成△AnBnCn,若S△ABC=S,则S${\;}_{△{A}_{n}}$${\;}_{{B}_{n}}$${\;}_{{C}_{n}}$=3nS.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=$\frac{3}{5}$AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是$\frac{32}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系xOy中,函数y=$\frac{4}{x}$(x>0)的图象与一次函数y=kx-k的图象交点为A(m,2).
(1)求一次函数的解析式;
(2)写出反比例函数值大于一次函数值时x的取值范围;
(3)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,求P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在一笔直的海岸线上有A、B两个观测点,B在A的正东方向,AB=4km.从A测得灯塔C在北偏东60°的方向,从B测得灯塔C在北偏西27°的方向,求灯塔C与观测点A的距离(精确到0.1km).
(参考数据:sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.为了推动阳光体育运动的广泛开展,引导学生积极参加体育锻炼,某校九年级准备购买一批运动鞋供学生借用,现从九年级各班随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)接受随机抽样调查的学生人数为40,图①中m的值为15;
(2)在本次调查中,学生鞋号的众数为35号,中位数为36号;
(3)根据样本数据,若该年级计划购买100双运动鞋,建议购买35号运动鞋多少双?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是$\frac{1}{3}$,则黄球的个数6.

查看答案和解析>>

同步练习册答案