精英家教网 > 初中数学 > 题目详情
3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列有4个结论:①b2-4ac>0;②abc<0;③b<a+c;④4a+b=1.请你将正确结论的番号都写出来①②③.

分析 ①根据抛物线与x轴有2个交点,可得△=b2-4ac>0,据此判断即可.
②首先根据抛物线开口向上,可得a>0;然后根据抛物线的对称轴为直线x=-$\frac{b}{2a}$>0,可得b<0;最后根据抛物线与y轴的交点在x轴上方,可得c>0,所以abc<0,据此判断即可.
③根据二次函数y=ax2+bx+c(a≠0)的图象,可得当x=-1时,y>0,所以b<a+c,据此判断即可.
④首先根据x=2时,y=0,可得4a+2b+c=0,所以(4a+b)+(b+c)=0,然后根据无法确定b+c是否等于-1,也就无法确定4a+b是否等于1,据此判断即可.

解答 解:∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,
∴结论①正确.

∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=-$\frac{b}{2a}$>0,
∴b<0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,
∴结论②正确.

∵当x=-1时,y>0,
∴a-b+c>0,
∴b<a+c,
∴结论③正确.

∵x=2时,y=0,
∴4a+2b+c=0,
∴(4a+b)+(b+c)=0,
∵无法确定b+c是否等于-1,
∴无法确定4a+b是否等于1,
∴结论④不正确.
综上,可得
正确的结论有:①②③.
故答案为:①②③.

点评 此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.某特警对为了选拔“神枪手”举行射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是(  )
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,在Rt△OAB中,∠OAB=90°,OA=AB=5,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OA1的长是5,∠AOB1的度数是135°;
(2)连接AA1,求证:四边形OAA1B1是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=$\sqrt{3}$,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,矩形ABCD中,AD=4,O是BC边上的点,以OC为半径作⊙O交AB于点E,BE=$\frac{3}{5}$AE,把四边形AECD沿着CE所在的直线对折(线段AD对应A′D′),当⊙O与A′D′相切时,线段AB的长是$\frac{32}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,⊙O的半径为1,点P(a,a-4)为⊙O外一点,过点P作⊙O的两条切线,切点分别为点A和点B,则四边形PBOA面积的最小值是$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A (-3,1),B (1,n)两点.
(1)求反比例函数和一次函数的表达式;
(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小华用两块不全等的等腰直角三角形的三角板摆放图形.
(1)如图①所示两个等腰直角△ABC,△DBE,两直角边交于点F,连接BF、AD,求证:BF=AD;
(2)如果小华将两块三角板△ABC,△DBE如图②所示摆放,使D、B、C三点在一条直线上,AC、DE的延长线相交于点F,过点F作FG∥BC,交直线AE于点G,连接AD,FB,求证:FG=AC+DC;
(3)在(2)的条件下,若AG=7$\sqrt{2}$,DC=5,将一个45°角的顶点与点B重合,并绕点B旋转,这个角的两边分别交线段FG于P、Q两点(如图③),若PG=2,求线段FQ的长.

查看答案和解析>>

同步练习册答案