精英家教网 > 初中数学 > 题目详情
3.下列各式的计算中,正确的是(  )
A.$\sqrt{(-4)×(-9)}$=$\sqrt{-4}$×$\sqrt{-9}$=6B.($\sqrt{3}$-1)2=3-1=2
C.$\sqrt{4{1}^{2}-4{0}^{2}}$=$\sqrt{81}$×$\sqrt{1}$=9D.3$\sqrt{\frac{2}{3}}$=$\sqrt{2}$

分析 根据二次根式的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据平方差公式和二次根式的乘法法则对C进行判断;利用二次根式的性质对D进行判断.

解答 解:A、原式=$\sqrt{4×9}$=$\sqrt{4}$×$\sqrt{9}$=6,所以A选项错误;
B、原式=3-2$\sqrt{3}$+1=4-2$\sqrt{3}$,所以B选项错误;
C、原式=$\sqrt{(41+40)×(41-40)}$=$\sqrt{81}$×$\sqrt{1}$=9,所以C选项正确;
D、原式=$\sqrt{6}$,所以D选项错误.
故选C.

点评 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.青少年“心理健康“问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康“知识测试.并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频数分布表和频数分布直方图(如图).请回答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.5140.28
70.5~80.5160.32
80.5~90.560.12
90.5~100.5100.20
合计501.00
(1)填写频数分布表中的空格,并补全频数分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好.若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在△ABC中,CD⊥AB于点D,∠A=2∠BCD.

(1)如图1,求证:AB=AC;
(2)如图2,E是AB上一点,F是AC延长线上一点,连接CE、BF,CE=BF,求证:∠BEC=∠CFB;
(3)如图3,在(2)的条件下,作EG∥BC交AC于点G,若∠CBF=2∠ACE,EG=2,BC=6,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知-25a2mb和7b3-na4是同类项,则m+n的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.在$\sqrt{4}$,3.14,$\frac{3}{11}$,$\sqrt{3}$,$\frac{π}{5}$,0.66666,这6个数中,无理数共有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是14人.
组 别A型B型AB型O型
频 率x0.40.150.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图①,AB是⊙O的弦,点C是⊙O上的一点,在直线AB上方找一点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由;
(2)如图②,AB是⊙O的弦,点C是⊙O上的一点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由;
问题解决:
(3)如图③,已知足球球门宽AB约为5$\sqrt{2}$米,一球员从距B点5$\sqrt{2}$米的C点(点A、B、C均在球场底线上),沿与AC成45°角的CD方向带球.试问,该球员能否在射线CD上找到一点P,使得点P为最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,O为直线AB上一点,∠BOC=α.
(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;
(2)若∠AOD=$\frac{1}{3}$∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;
(3)若∠AOD=$\frac{1}{n}$∠AOC,∠DOE=$\frac{180°}{n}$(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).

查看答案和解析>>

同步练习册答案