分析 (1)①根据平行线的性质得到∠ADB=∠DBC,由角平分线的定义得到∠ABD=∠DBC,等量代换得到∠ABD=∠ADB,根据等腰三角形的判定即可得到AB=AD;②根据平行线的性质得到∠ADC=∠DCE,由①知AB=AD,等量代换得到AC=AD,根据等腰三角形的性质得到∠ACD=∠ADC,求得∠ACD=∠DCE,即可得到结论;
(2)根据角平分线的定义得到∠DBC=$\frac{1}{2}$∠ABC,∠DCE=$\frac{1}{2}$∠ACE,由于∠BDC+∠DBC=∠DCE于是得到∠BDC+$\frac{1}{2}$∠ABC=∠ACE,由∠BAC+∠ABC=∠ACE,于是得到∠DC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠BAC,即可得到结论.
解答 解:(1)①∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
②∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
(2)∠BDC=$\frac{1}{2}$∠BAC,
∵BD、CD分别平分∠ABE,∠ACE,
∴∠DBC=$\frac{1}{2}$∠ABC,∠DCE=$\frac{1}{2}$∠ACE,
∵∠BDC+∠DBC=∠DCE,
∴∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ACE,
∵∠BAC+∠ABC=∠ACE,
∴∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠BAC,
∴∠BDC=$\frac{1}{2}$∠BAC.
点评 本题考查了等腰三角形的判定和性质,角平分线的定义,平行线的性质,熟练掌握等腰三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com