| A. | $\frac{15}{4}$ | B. | 2 | C. | $\frac{15}{8}$ | D. | $\frac{3}{2}$ |
分析 首先根据翻折变换的性质,可得AD=AB=10,DE=BE;然后设点E的坐标是(10,b),在Rt△CDE中,根据勾股定理,求出CE的长度,进而求出k的值是多少;最后用k的值除以点F的纵坐标,求出线段AF的长为多少即可.
解答 解:∵△ABE沿AE折叠,点B刚好与OC边上点D重合,
∴AD=AB=10,DE=BE,
∵AO=8,AD=10,
∴OD=$\sqrt{{10}^{2}{-8}^{2}}=6$,CD=10-6=4,
设点E的坐标是(10,b),
则CE=b,DE=10-b,
∵CD2+CE2=DE2,
∴42+b2=(8-b)2,
解得b=3,
∴点E的坐标是(10,3),
∴k=10×3=30,
∴线段AF的长为:
30$÷8=\frac{15}{4}$.
故选:A.
点评 (1)此题主要考查了翻折变换(折叠问题),要熟练掌握,解答此题的关键是要明确:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
(2)此题还考查了反比例函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com