精英家教网 > 初中数学 > 题目详情
12.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
污水处理设备A型B型
价格(万元/台)mm-3
月处理污水量(吨/台)22001800
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问采用何种购买方案可以使得每月处理污水量的吨数为最多?并求出最多吨数.

分析 (1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出关于m的分式方程,求出m的值即可;
(2)设购买A型设备x台,则B型设备(10-x)台,根据题意列出关于x的一元一次不等式,求出x的取值范围.再设每月处理污水量为W吨,则W=2200x+1800(10-x)=400x+18000,根据一次函数的性质即可求出最大值.

解答 解:(1)由题意得:$\frac{90}{m}$=$\frac{75}{m-3}$,
解得m=18.
经检验m=18是原方程的根,
故m的值为18;

(2)设购买A型设备x台,则B型设备(10-x)台,
由题意得:18x+15(10-x)≤165,
解得x≤5.
设每月处理污水量为W吨,由题意得W=2200x+1800(10-x)=400x+18000,
∵400>0,
∴W随着x的增大而增大,
∴当x=5时,W最大值为:400×5+18000=20000,
即两种设备各购入5台,可以使得每月处理污水量的吨数为最多,最多为20000吨.

点评 本题考查分式方程的应用,一次函数的应用和一元一次不等式的应用,分析题意,找到合适的关系是解决问题的关键.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图1,点O为正方形ABCD的中心.
(1)将线段OE绕点O逆时针方向旋转90°,点E的对应点为点F,连结EF,AE,BF,请依题意补全图1;
(2)根据图1中补全的图形,猜想并证明AE与BF的关系;
(3)如图2,点G是OA中点,△EGF是等腰直角三角形,H是EF的中点,∠EGF=90°,AB=2$\sqrt{2}$,GE=2,△EGF绕G点逆时针方向旋转α角度,请直接写出旋转过程中BH的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图,AB∥CD.

(1)如图1,猜想并写出∠B、∠D、∠E之间的数量关系,图2、图3、图4是三种不同角度思考采用的不同添加辅助线的方式,请你选择其中的两种方式说明理由.
(2)在图4中,如果BE、DE分别平分∠ABD、∠CDB,则∠E的度数是多少?(直接写出答案)
(3)根据以上推理,直接写出图5、图6、图7中的∠B、∠D、∠E之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.二元一次方程组$\left\{\begin{array}{l}x+y=1\\ x-y=3\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$B.$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.某校人数相等的甲、乙两个班同时进行测验,班级的平均分和方差分别为:$\overline{{x}_{甲}}$=78分,$\overline{{x}_{乙}}$=78分,s2=180,s2=80,那么成绩较为整齐的是(  )
A.甲班B.两个班一样整齐C.乙班D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在?ABCD中,∠ABC的平分线交AD于点E,AB=4,BC=6,则DE的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知菱形ABCD,对角线AC、BD相交于点O,AB=10,AC=16.点P在AO上,点Q在DO上,且AP=2OQ.
(1)求线段OD的长;
(2)若PQ=BQ,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.若a>b,则下列不等式变形正确的是(  )
A.a+5<b+5B.$\frac{a}{3}>\frac{b}{3}$C.-4a>-4bD.3a-2<3b-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若a<b,则下列不等式中正确的是(  )
A.2a>2bB.a-b>0C.-3a>-3bD.a-3<b-5

查看答案和解析>>

同步练习册答案