精英家教网 > 初中数学 > 题目详情
7.如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=-$\frac{6}{x}$的图象交于A(-1,m),B(n,-3)两点,一次函数y=kx+b的图象与y轴交于点C.
(1)求一次函数的解析式;
(2)点P是x轴上一点,且△BOP的面积是△BOC面积的2倍,求点P的坐标.

分析 (1)把点A(-1,m),B(n,-3)代入$y=-\frac{6}{x}$求得A(-1,6),B(2,-3),由于一次函数y=kx+b的图象过A(-1,6),B(2,-3)两点,解方程组,即可得到结果;
(2)由于一次函数y=-3x+3与y轴交点C(0,3)且B(2,-3)求得△BOC面积=3,由于P是x轴上一点,且△BOP的面积是△BOC面积的2倍,设P(a,0),得到方程$\frac{1}{2}$×|a|×2=6,解得即可得到结果.

解答 解:(1)∵点A(-1,m),B(n,-3)在反比例函数$y=-\frac{6}{x}$的图象上,
∴m=$\frac{-6}{-1}$=6,-3=$\frac{-6}{n}$,∴n=2.
∴A(-1,6),B(2,-3),
∵一次函数y=kx+b的图象过A(-1,6),B(2,-3)两点,
∴$\left\{{\begin{array}{l}{6=-k+b}\\{-3=2k+b}\end{array}}\right.$,解方程组得$\left\{{\begin{array}{l}{k=-3}\\{b=3}\end{array}}\right.$
∴一次函数的解析式为y=-3x+3;

(2)∵一次函数y=-3x+3与y轴交点C(0,3),且B(2,-3)
∴△BOC面积=3,
∵P是x轴上一点,且△BOP的面积是△BOC面积的2倍,
∴设P(a,0),
∴$\frac{1}{2}$×|a|×3=6,解得,a=±4.
∴点P的坐标为(4,0)或(-4,0).

点评 本题考查了待定系数法求函数的解析式,根据函数的解析式求点的坐标,根据三角形的面积求点的坐标,注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为$\frac{1}{2}$x(x-1)=2×5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=$\sqrt{3}$,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,⊙O的半径为1,点P(a,a-4)为⊙O外一点,过点P作⊙O的两条切线,切点分别为点A和点B,则四边形PBOA面积的最小值是$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知直线y=$\sqrt{3}$x,点A1的坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1的长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2的长为半径画弧交x轴于点A3,…,按此做法进行下去,则点B6的坐标为(32,32$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=$\frac{m}{x}$(m≠0)的图象交于A (-3,1),B (1,n)两点.
(1)求反比例函数和一次函数的表达式;
(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”.现有50名学生参加决赛,他们同时听写50个汉字,每正确听写出一个汉字得2分,根据测试成绩绘制出部分频数分布表和频数分布直方图:
组别成绩x分频数(人数)
第1组50≤x<604
第2组60≤x<708
第3组70≤x<8016
第4组80≤x<90a
第5组90≤x<10010
合计50
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,二次函数的解析式为y=-x2+2x+3.
(1)写出这个二次函数图象的顶点坐标,并求出图象与x轴的交点的坐标;
(2)在给定的坐标系中,利用“五点法”画出这个二次函数的示意图,并求出以抛物线与坐标轴的交点为顶点的三角形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知四边形ABCD中,∠ABC=90°,AB∥CD,BC=12,AB>6,点E为BC的中点,连接AE,ED,△ABE与△AFE关于直线AE对称,且点F在AD上
(1)求证:CD=DF;
(2)设AB=y,CD=x,写出y与x之间的关系式;
(3)过点F作FM∥CD交ED于点M,连接CM
①判断四边形DFMC的形状,并证明;
②若AB=6$\sqrt{3}$,求△EMF的面积.

查看答案和解析>>

同步练习册答案