精英家教网 > 初中数学 > 题目详情
9.如图,已知AB∥CD,AD、BC相交于点E,点F在ED上,且∠CBF=∠D.
(1)求证:FB2=FE•FA;
(2)若BF=3,EF=2,求△ABE与△BEF的面积之比.

分析 (1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;
(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.

解答 (1)证明:∵AB∥CD,
∴∠A=∠D.
又∵∠CBF=∠D,
∴∠A=∠CBF,
∵∠BFE=∠AFB,
∴△FBE∽△FAB,
∴$\frac{FB}{FA}=\frac{FE}{FB}$
∴FB2=FE•FA;
(2)∵FB2=FE•FA,BF=3,EF=2
∴32=2×(2+AE)
∴$AE=\frac{5}{2}$
∴$\frac{AE}{EF}=\frac{5}{4}$,
∴△ABE与△BEF的面积之比为5:4.

点评 本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,一张长3x的正方形纸片,剪去两个一样的小直角三角形和一个长方形.设剪去的小长方形的长和宽分别为x,y,剪去的两个小直角三角形直角边的长也分别为x,y.
(1)用含有x,y的式子表示图中阴影部分的面积.
(2)当x=8,y=2时,求此阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.从一张边长分别为3cm、4cm、5cm的三角形纸片中剪出一个面积最大的圆,这个圆的半径为1cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为100°40′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.将方程x2-4x-3=0配方成(x-h)2=k的形式为(x-2)2=7.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算正确的是(  )
A.a6÷a2=a3B.a•a=2aC.(a43=a12D.a2+a2=2a4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径作⊙C,则正确的是(  )
A.当r=2时,直线AB与⊙C相交B.当r=3时,直线AB与⊙C相离
C.当r=2.4时,直线AB与⊙C相切D.当r=4时,直线AB与⊙C相切

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直线l上,将△ABC绕点A顺时针转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+$\sqrt{3}$;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+$\sqrt{3}$;…,按此顺序继续旋转,得到点P2016,则AP2016=(  )
A.2016+671$\sqrt{3}$B.2016+672$\sqrt{3}$C.2017+672$\sqrt{3}$D.2016+673$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,OB、OC是∠AOD的两条射线,OM和ON分别是∠AOB和∠COD内部的一条射线,且∠AOD=α,∠MON=β.
(1)当∠AOM=∠BOM,∠DON=∠CON时,试用含α和β的代数式表示∠BOC;
(2)①当∠AOM=2∠BOM,∠DON=2∠CON时,∠BOC等于多少?(用含α和β的代数式表示)
②当∠AOM=3∠BOM,∠DON=3∠CON时,∠BOC等于多少?(用含α和β的代数式表示)
(3)根据上面的结果,请填空:当∠AOM=n∠BOM,∠DON=n∠CON时,∠BOC=$\frac{n+1}{n}$β-$\frac{1}{n}$α.(n是正整数)(用含α和β的代数式表示).

查看答案和解析>>

同步练习册答案