精英家教网 > 初中数学 > 题目详情
19.在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y与x的函数关系的图象大致如下图,则AB边上的高是(  )
A.3B.4C.5D.6

分析 要找出准确反映y与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.

解答 解:由图象可以看出BC=5,CD=6,S行四边形ABCD=24,
∵S行四边形ABCD=AB×h=6h=24,
∴h=4.
故选:B.

点评 本题主要考查了函数的图象与几何变换,动点问题函数图象,随着动点的变化,面积也发生着变化,得出它们之间的函数关系并反映在函数图象上,此类问题要注意自变量的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,在等边三角形纸片△ABC中,将纸片折叠,点A落在BC边上的点D处,MN为折痕,当DN⊥NC时,CN=1,则A、D两点之间的距离为$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知关于x的函数 y=mx2+(m-3)x-3.
(1)求证:无论m取何实数,此函数的图象与x轴总有公共点;
(2)当m>0时,如果此函数的图象与x轴公共点的横坐标为整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,且∠BAC=∠CAD,过点C作CE⊥AD,垂足为点E.
(1)试判断CE与⊙O的位置关系,并说明理由;
(2)若AB=5,AC=4,求CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.甲乙两城市之间有一条公路相连,公路中途穿过丙市,现有两位司机M、N相约各自同时从甲乙两地出发,途中M将一件物品交给N,已知M从甲市到丙市,N从乙市到甲市,N的速度是M的$\frac{3}{4}$,他们开车距离丙市的距离y(千米)与行驶的时间t(小时)的函数图象如图所示.
(1)求a的值;
(2)求AB所在直线的函数解析式及C点的坐标;
(3)何时他们相距300千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,抛物线y1=x2+mx+n与直线y2=x-1交于点A(a,-2)和B(b,2).
(1)求a,b的值;
(2)观察图象,直接写出当y1<y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF,BD⊥CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,AC与BG的交点为M,当AB=4,AD=$\sqrt{2}$时,求线段CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=$\frac{2}{3}$x2+bx+c经过点B,且顶点在直线x=$\frac{5}{2}$上.
(1)求抛物线的解析式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E.当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,已知在对称轴上存在一点P,使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,点M从O点出发,在线段OB上以每秒2个OD长度的速度向B点运动,同时点Q 从O点出发,在线段OD上以每秒1个单位长度的速度向D点运动,其中一个点到达终点时,另一个点也停止运动,求运动多少秒使△PMN的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB切⊙O于点B,OA=2$\sqrt{3}$,∠BAO=60°,弦BC∥OA,则$\widehat{BC}$的长为2π(结果保留π).

查看答案和解析>>

同步练习册答案