【题目】为了了解当下高二男生的身高状况,某地区对高二年级男生的身高(单位:
)进行了抽样调查,得到的频率分布直方图如图所示.已知身高在
之间的男生人数比身高在
之间的人数少1人.
![]()
(1)若身高在
以内的定义为身高正常,而该地区共有高二男生18000人,则该地区高二男生中身高正常的大约有多少人?
(2)从所抽取的样本中身高在
和
的男生中随机再选出2人调查其平时体育锻炼习惯对身高的影响,则所选出的2人中至少有一人身高大于185
的概率是多少?
【答案】(1)12600;(2)
.
【解析】
(1)由频率分布直方图知,身高正常的频率,于是可得答案;
(2)先计算出样本容量,再找出样本中身高在
中的人数,从而利用古典概型公式得到答案.
(1)由频率分布直方图知,身高正常的频率为0.7,所以估计总体,即该地区所有高二年级男生中身高正常的频率为0.7,所以该地区高二男生中身高正常的大约有
人.
(2)由所抽取样本中身高在
的频率为
,可知身高在
的频率为
,所以样本容量为
,则样本中身高在
中的有3人,记为
,身高在
中的有2人,记为
,从这5人中再选2人,共有
,
,
,
,
,
,
,
,
,
10种不同的选法,而且每种选法都是互斥且等可能的,所以,所选2人中至少有一人身高大于185
的概率
.
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+
)+2
=0,曲线C2的参数方程为
(θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
的图象经过
和
两点,如图所示,且函数
的值域为
.过该函数图象上的动点
作
轴的垂线,垂足为
,连接
.
![]()
(I)求函数
的解析式;
(Ⅱ)记
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现从某高中随机抽取部分高二学生,调査其到校所需的时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中到校所需时间的范围是
,样本数据分组为
.
![]()
(1)求直方图中
的值;
(2)如果学生到校所需时间不少于1小时,则可申请在学校住宿.若该校录取1200名新生,请估计高二新生中有多少人可以申请住宿;
(3)以直方图中的频率作为概率,现从该学校的高二新生中任选4名学生,用
表示所选4名学生中“到校所需时间少于40分钟”的人数,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数φ(x)=
,a>0
(1)若函数f(x)=lnx+φ(x),在(1,2)上只有一个极值点,求a的取值范围;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],且x1≠x2 , 都有
<﹣1,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com