【题目】设x,y满足不等式组
,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为 .
【答案】[﹣2,1]
【解析】解:由z=ax+y得y=﹣ax+z,直线y=﹣ax+z是斜率为﹣a,y轴上的截距为z的直线, 作出不等式组对应的平面区域如图:
则A(1,1),B(2,4),
∵z=ax+y的最大值为2a+4,最小值为a+1,
∴直线z=ax+y过点B时,取得最大值为2a+4,
经过点A时取得最小值为a+1,
若a=0,则y=z,此时满足条件,
若a>0,则目标函数斜率k=﹣a<0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足﹣a≥kBC=﹣1,
即0<a≤1,
若a<0,则目标函数斜率k=﹣a>0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足﹣a≤kAC=2,
即﹣2≤a<0,
综上﹣2≤a≤1,
所以答案是:[﹣2,1].![]()
科目:高中数学 来源: 题型:
【题目】已知函数
(其中
,
为常数,
为自然对数的底数).
(1)讨论函数
的单调性;
(2)设曲线
在
处的切线为
,当
时,求直线
在
轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,
轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线
的极坐标方程为
,曲线
的极坐标方程为
.
(1)设
为参数,若
,求直线
的参数方程;
(2)已知直线
与曲线
交于
,设
,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的四个顶点组成的四边形的面积为
,且经过点
.![]()
(1)求椭圆
的方程;
(2)若椭圆
的下顶点为
,如图所示,点
为直线
上的一个动点,过椭圆
的右焦点
的直线
垂直于
,且与
交于
两点,与
交于点
,四边形
和
的面积分别为
.求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①命题“
,
”的否定是:“
,
”;
②若样本数据
的平均值和方差分别为
和
则数据
的平均值和标准差分别为
,
;
③两个事件不是互斥事件的必要不充分条件是两个事件不是对立事件;
④在
列联表中,若比值
与
相差越大,则两个分类变量有关系的可能性就越大.
⑤已知
为两个平面,且
,
为直线.则命题:“若
,则
”的逆命题和否命题均为假命题.
⑥设定点
、
,动点
满足条件
为正常数),则
的轨迹是椭圆.其中真命题的个数为( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
![]()
(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为
(元).求随机变量
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com