【题目】已知椭圆
的右焦点为
,离心率为
,过
作与
轴垂直的直线与椭圆交于
两点,
.
(1)求椭圆
的方程;
(2)设过点
的直线
的斜率存在且不为0,直线
交椭圆于
两点,若
中点为
,
为原点,直线
交
于点
,若以
为直径的圆过右焦点
,求
的值.
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到其焦点
的距离为4,椭圆
的离心率
,且过抛物线的焦点
.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线
交抛物线
于
两不同点,交
轴于点
,已知
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC=
,求cosC+
sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
(t为参数),曲线C的参数方程为
(θ为参数)
(1)以原点O为极点,以x轴正半轴为极轴(与直角坐标系xOy取相同的长度单位)建立极坐标系,若点P的极坐标为(4,
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,利用曲线C的参数方程求Q到直线l的距离的最大值与最小值的差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1;
(Ⅱ)若CD=
a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为
(t为参数),曲线C的参数方程为
(θ为参数)
(1)以原点O为极点,以x轴正半轴为极轴(与直角坐标系xOy取相同的长度单位)建立极坐标系,若点P的极坐标为(4,
),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,利用曲线C的参数方程求Q到直线l的距离的最大值与最小值的差.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=6cos2
+
sinωx﹣3(ω>2)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形. ![]()
(1)求ω的值;
(2)求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}为等差数列,数列{bn}为等比数列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),则数列{bn}的公比为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com