【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数),以原点
为极点,以
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线
的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点
,
分别是曲线
,
上两动点且
,求
面积的最大值.
科目:高中数学 来源: 题型:
【题目】在极坐标系
中,曲线
的极坐标方程为
,直线
的极坐标方程为
,设
与
交于
、
两点,
中点为
,
的垂直平分线交
于
、
.以
为坐标原点,极轴为
轴的正半轴建立直角坐标系
.
(1)求
的直角坐标方程与点
的直角坐标;
(2)求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数
的分布列为
| 1 | 2 | 3 | 4 | 5 |
P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,X表示经销一件该商品的利润.
(1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率
;
(2)求X的分布列及期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是
上的奇函数,其中
,则下 列关于函数
的描述中,其中正确的是( )
①将函数
的图象向右平移
个单位可以得到函数
的图象;
②函数
图象的一条对称轴方程为
;
③当
时,函数
的最小值为
;
④函数
在
上单调递增.
A.①③B.③④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点M(﹣2,﹣1),离心率为
.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)试判断直线PQ的斜率是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
分别是椭圆
的左,右焦点,
两点分别是椭圆
的上,下顶点,
是等腰直角三角形,延长
交椭圆
于
点,且
的周长为
.
(1)求椭圆
的方程;
(2)设点
是椭圆
上异于
的动点,直线
与直
分别相交于
两点,点
,求证:
的外接圆恒过原点
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的共同努力,新冠肺炎疫情得到了有效控制.作为集中医学观察隔离点的某酒店在疫情期间,为客人提供两种速食品—“方便面”和“自热米饭”.为调查这两种速食品的受欢迎程度,酒店部门经理记录了连续10天这两种速食品的销售量,得到如下频数分布表(其中销售量单位:盒):
第 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方便面 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 |
自热米饭 | 88 | 96 | 98 | 97 | 101 | 99 | 102 | 107 | 104 | 112 |
(1)根据两组数据完成下面的茎叶图(填到答题卡上);
![]()
(2)根据统计学知识,你认为哪种速食品更受欢迎,并简要说明理由;
(3)求自热米饭销售量y关于天数t的线性回归方程,并预估第12天自热米饭的销售量(结果精确到整数).
参考数据:
,
.
附:回归直线方程
,其中
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com