如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角
,如图二,在二面角
中.![]()
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
(1)
=
;
(2) CH不可能同时垂直BD和BA,即CH不与面ABD垂直。
解析试题分析:依题意,
ABD=90o,建立如图的坐标系使得△ABC在yoz平面上,
△ABD与△ABC成30o的二面角, ![]()
DBY=30o,又AB=BD=2,
A(0,0,2),B(0,0,0),C(0,
,1),D(1,
,0),![]()
(1)
x轴与面ABC垂直,故(1,0,0)是面ABC的一个法向量。
设CD与面ABC成的角为
,而
= (1,0,-1),
sin
=
=![]()
![]()
![]()
[0,
],![]()
=
; 6分
(2) 设
=t
= t(1,
,-2)= (t,
t,-2 t),
=
+
=(0,-
,1) +(t,
t,-2 t) = (t,
t-
,-2 t+1),
若![]()
![]()
,则 (t,
t-
,-2 t+1)·(0,0,2)="0" 得t=
, 10分
此时
=(
,-
,0),而
=(1,
,0),
·
=
-
=-1
0,
和
不垂直,即CH不可能同时垂直BD和BA,即CH不与面ABD垂直。12分
考点:立体几何中的平行关系、垂直关系,角的计算,空间向量的应用。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,本题利用空间向量,简化了证明及计算过程。
科目:高中数学 来源: 题型:解答题
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=
,AE、CF都与平面ABCD垂直,AE=1,CF=2.![]()
(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角
,如图二,在二面角
中.![]()
(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD,
. ![]()
(Ⅰ) 证明: A1C⊥平面BB1D1D;
(Ⅱ) 求平面OCB1与平面BB1D1D的夹角
的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥ABCD-PGFE中,底面ABCD是直角梯形,侧棱垂直于底面,AB//DC,∠ABC=45o,DC=1,AB=2,PA=1.![]()
(Ⅰ)求PD与BC所成角的大小;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)求二面角A-PC-D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角梯形ABCD中,AD//BC,
,
,如图(1).把
沿
翻折,使得平面
,如图(2).![]()
(Ⅰ)求证:
;
(Ⅱ)求三棱锥
的体积;
(Ⅲ)在线段
上是否存在点N,使得![]()
?若存在,请求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,面
为正方形,面
为等腰梯形,
,
,
,
.![]()
(1)求证:
;
(2)求三棱锥
的体积;
(3)线段
上是否存在点
,使
//平面
?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com