【题目】2020年1月底因新型冠状病毒感染的肺炎疫情形势严峻,避免外出是减少相互交叉感染最有效的方式.在家中适当锻炼,合理休息,能够提高自身免疫力,抵抗该种病毒.某小区为了调查“宅”家居民的运动情况,从该小区随机抽取了100位成年人,记录了他们某天的锻炼时间,其频率分布直方图如下:
![]()
(1)求a的值,并估计这100位居民锻炼时间的平均值
(同一组中的数据用该组区间的中点值代表);
(2)小张是该小区的一位居民,他记录了自己“宅”家7天的锻炼时长:
序号n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
锻炼时长m(单位:分钟) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根据数据求m关于n的线性回归方程;
(Ⅱ)若
(
是(1)中的平均值),则当天被称为“有效运动日”.估计小张“宅”家第8天是否是“有效运动日”?
附;在线性回归方程
中,
,
.
科目:高中数学 来源: 题型:
【题目】2016年某高校艺术类考试中,共有6位选手参加,其中3位女生,3位男生,现这6名考生依次出场进行才艺展出,如果3位男生中任何2人都不能连续出场,且女生甲不能排第一个,那么这6名考生出场顺序的排法种数为( )
A.108B.120C.132D.144
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面
是边长为2的正方形,
平面
,
,
分别是棱
,
的中点.
![]()
(1)求证:
平面
;
(2)若
,求平面
将三棱锥
分成的两部分的体积中较大部分的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的四个顶点围成的菱形的面积为
,椭圆的一个焦点为
.
(1)求椭圆的方程;
(2)若
,
为椭圆上的两个动点,直线
,
的斜率分别为
,
,当
时,
的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平行四边形ABCD中,∠A
,2AB=BC,E,F分别是BC,AD的中点.将四边形DCEF沿着EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFD﹣BEC.
![]()
(1)证明:DB⊥EF;
(2)若AB=2,求三棱柱AFD﹣BEC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为4.且过点
.
(1)求椭圆E的方程;
(2)设
,
,
,过B点且斜率为
的直线l交椭圆E于另一点M,交x轴于点Q,直线AM与直线
相交于点P.证明:
(O为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com