精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:,现从数列的前2020项中随机抽取1项,则该项不能被3整除的概率是(

A.B.C.D.

【答案】D

【解析】

这是一个古典概型,总的基本事件数是2020,根据,可得数列的项依次为1123581321345589144……,由整除的定义可得第一项被3整除的余数为1,第二项被3整除的余数为1,则第三项被3整除的余数为2,故其第四项可以被3整除,依此分析可知数列中第4n项()可以被3整除,得到基本事件数,利用概率公式可得整除的概率,然后用对立事件的概率求得不能被整除的概率.

根据题意,数列的项依次为1123581321345589144……

则第一项被3整除的余数为1,第二项被3整除的余数为1,则第三项被3整除的余数为2,故其第四项可以被3整除.

同理,第五项被3整除的余数为1,第六项被3整除的余数为1,则第七项被3整除的余数为2,故其第八项可以被3整除.

依此类推,分析可得数列中第4n项()可以被3整除.

数列的前2020项中,有505项可以被3整数,

故从数列的前2020项中随机抽取1项,不能被3整除的概率

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).

35.6%的客户认为态度良好影响他们的满意度;

156位客户认为使用礼貌用语影响他们的满意度;

③最影响客户满意度的因素是电话接起快速;

④不超过10%的客户认为工单派发准确影响他们的满意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面

1)求证:

2)若直线与平面所成的角为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图四棱锥中,底面为菱形,平面EM分别是BCPD中点,点F在棱PC上移动.

1)证明无论点FPC上如何移动,都有平面平面

2)当直线AF与平面PCD所成的角最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学与文学之间存在着奇妙的联系,诗中有回文诗,如“山东落花生花落东山,西湖回游鱼游回湖西”,倒过来读,仍然是原句!数学上也有这样一类数,如66202377334543,无论从左往右读,还是从右往左读,都是同一个数,我们称这样的数为“回文数”,现用数字1234组数(可重复用),则组成的五位“回文数”的个数为(

A.24B.28C.48D.64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为t为参数,).在以坐标原点为极点、x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为

1)若点在直线l上,求线l的直角坐标方程和曲线C的直角坐标方程;

2)已知,点P在直线l上,点Q在曲线C上,且的最小值为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB两同学参加数学竞赛培训,在培训期间,他们参加了8次测验,成绩(单位:分)记录如下:

A 71 62 72 76 63 70 85 83

B 73 84 75 73 78 76 85

B同学的成绩不慎被墨迹污染(分别用mn表示).

1)用茎叶图表示这两组数据,现从AB两同学中选派一人去参加数学竞赛,你认为选派谁更好?请说明理由(不用计算);

2)若B同学的平均分为78,方差,求mn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集,其中,且,若对两数中至少有一个属于,则称数集具有性质.

1)分别判断数集与数集是否具有性质,说明理由;

2)已知数集具有性质,判断数列是否为等差数列,若是等差数列,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1(a>b>0)的两焦点之间的距离为2,两条准线间的距离为8,直线lyk(xm)(mR)与椭圆交于PQ两点.

(1) 求椭圆C的方程;

(2) 设椭圆的左顶点为A,记直线APAQ的斜率分别为k1k2.①若m0,求k1k2的值;②若k1k2=-,求实数m的值.

查看答案和解析>>

同步练习册答案