【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点
为极点,
轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)求曲线
和
的公共点的极坐标;
(2)若
为曲线
上的一个动点,求
到直线
的距离的最大值.
科目:高中数学 来源: 题型:
【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为
.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式及数据:K2=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
(
),直线
与抛物线
交于
(点
在点
的左侧)两点,且
.
(1)求抛物线
在
两点处的切线方程;
(2)若直线
与抛物线
交于
两点,且
的中点在线段
上,
的垂直平分线交
轴于点
,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设x=1与x=2是函数f(x)=aln x+bx2+x的两个极值点.
(1)试确定常数a和b的值;
(2)判断x=1,x=2是函数f(x)的极大值点还是极小值点,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点
是圆
:
上的任意一点,点
与点
的连线段的垂直平分线和
相交于点
.
(I)求点
的轨迹
方程;
(II)过坐标原点
的直线
交轨迹
于点
,
两点,直线
与坐标轴不重合.
是轨迹
上的一点,若
的面积是4,试问直线
,
的斜率之积是否为定值,若是,求出此定值,否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com