精英家教网 > 高中数学 > 题目详情

已知函数是奇函数,并且函数的图像经过点
(1)求实数的值;   
(2)求函数的值域;
(3)证明函数在(0,+上单调递减,并写出的单调区间.

解:⑴法一:由题意得
解得.经检验为奇函数
法二是奇函数,,即
,得
所以,得,  
,所以,即
所以.   
(2)法一:=
 ∴ ∴ ∴

法二:由
  ∴  解得


…………
>0
∴函数在(0,+上单调递减
∵函数是奇函数,∴在(-∞,0)上也是递减
的单调减区间为(-∞,0),(0,+

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知的定义域为,且恒有等式对任意的实
成立.
(Ⅰ)试求的解析式;
(Ⅱ)讨论上的单调性,并用单调性定义予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若不等式的解集为(-1,3)。
(1)求的值;
(2)若函数上的最小值为1,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数 
(1)当时,求函数的最大值和最小值;
(2)求实数的取值范围,使在区间上是单调减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知: 是定义在区间上的奇函数,且.若对于任意的时,都有
(1)解不等式
(2)若对所有恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求证f(x)为奇函数;
(Ⅲ)若f()+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=是奇函数(a,b,c都是整数)且f(1)=2,f(2)<3
(1)求a,b,c的值;
(2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的偶函数,且时,
(Ⅰ)求的值;
(Ⅱ)求函数的值域
(Ⅲ)设函数的定义域为集合,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数为奇函数,求实数的值;
(2)在(1)的条件下,求函数的值域

查看答案和解析>>

同步练习册答案