【题目】已知函数
(
自然对数的底数)有两个零点.
(1)求实数
的取值范围;
(2)若
的两个零点分别为![]()
,证明:
.
【答案】(1)
.(2)证明见解析
【解析】
(1)将
有两个零点问题,转化为
有两个零点,利用
研究
的单调性和零点,由此求得
的取值范围.
(2)将所要证明的不等式转化为证明
,构造函数
,利用
证得
,由此证得不等式成立.
(1)
有两个零点,等价于
有两个零点,令
,则
在
时恒成立,所以
在
时单调递增,
所以
有两个零点,等价于
有两个零点.
因为
所以
①当
时,
,
单调递增,不可能有两个零点;
②当
时,令
,得
,
单调递增;令
,得
,
单调递减.
所以
.
若
,得
,此时
恒成立,没有零点;
若
,得
,此时
有一个零点;
若
,得
,因为
,且
,
,所以
在
,
上各存在一个零点,符合题意.
综上,当
时,函数
有两个零点,
即若函数
有两个零点,则
的取值范围为
.
(2)要证
,只需证
,即证
,
由(1)知
,
,所以只需证
.
因为
,
,所以
,
,
所以
,只需证
.
设
,令
,则
,所以只需证
,即证
.
令
,
,则
,
.
即当
时,
成立.
所以
,即
,
即
.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,方程C:
表示的曲线被称作“四叶玫瑰线”(如图)
![]()
(1)求以极点为圆心的单位圆与四叶玫瑰线交点的极坐标和直角坐标;
(2)直角坐标系的原点与极点重合,x轴正半轴与极轴重合.求直线l:
上的点M与四叶攻瑰线上的点N的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点.
①证明:直线
的斜率依次成等比数列.
②若
与
关于
轴对称,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为( )
A.20.5B.21元C.21.5元D.22元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为彻底打赢脱贫攻坚战,2020年春,某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2000元,每斤售价0.5元,茄子每亩产量5000斤,成本3000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为( )
A.4万元B.5.5万元C.6.5万元D.10万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为
,餐饮满意度为
)
![]()
(1)求“住宿满意度”分数的平均数;
(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;
(3)为提高对酒店的满意度,现从
且
的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度
(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:
;高热:
;超高热(有生命危险):
.
某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:
抗生素使用情况 | 没有使用 | 使用“抗生素A”治疗 | 使用“抗生素B”治疗 | |||||
日期 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 |
体温(℃) | 38.7 | 39.4 | 39.7 | 40.1 | 39.9 | 39.2 | 38.9 | 39.0 |
抗生素使用情况 | 使用“抗生素C”治疗 | 没有使用 | |||||
日期 | 20日 | 21日 | 22日 | 23日 | 24日 | 25日 | 26日 |
体温(℃) | 38.4 | 38.0 | 37.6 | 37.1 | 36.8 | 36.6 | 36.3 |
(1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;
(2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“
项目”的检查,求至少两天在高热体温下做“
项目”检查的概率;
(3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正四面体P-ABC的棱长均为a,O为正四面体P-ABC的外接球的球心,过点O作平行于底面ABC的平面截正四面体P-ABC,得到三棱锥P-A1B1C1和三棱台ABC-A1B1C1,那么三棱锥P-A1B1C1的外接球的表面积为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com