精英家教网 > 高中数学 > 题目详情
5.某学校为了加强学生的安全教育,对学校旁边A,B两个路口进行了8天的监测调查,得到每天路口不按交通规则过马路的学生人数(如茎叶图所示),且A路口数据的平均数比B路口数据的平均数小2.
(1)求出A路口8个数据的中位数和茎叶图中m的值;
(2)在B路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

分析 (1)由茎叶图可得A路口8个数据中34,35为最中间2个数,由此计算中位数,又A路口8个数据的平均数为34,得到B路口的平均数,求出m的值即可;
(2)B路口的数据中任取2个大于35的数据,有10种可能,其中“至少有一个不小于40”的情况有7种,求出满足条件的概率即可.

解答 解:(1)A路口8年数据的中位数是$\frac{34+35}{2}$=34.5,
∵A路口8年数据的平均数是:
$\frac{21+30+31+34+35+35+37+49}{8}$=34,
∴B路口8个数据的平均数是36,
∴$\frac{24+32+36+37+38+42+45+(30+m)}{8}$=36,解得:m=4;
(2)B在路口的数据中取2个大于35的数据,有如下10中可能结果:
(36,37),(36,36),(36,42),(36,45),(37,38),
(37,42),(37,45),(38,42),(38,45),(42,45),
其中“至少有一个抽取的数据不小于40”的情况如下7种:
(36,42),(36,45),(37,42),(37,45),
(38,42),(38,45),(42,45),
故所求的概率p=$\frac{7}{10}$.

点评 本题考查了平均数,古典概型问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ y≤2x\\ x+y≤1\end{array}\right.$,则目标函数z=x+4y的最大值是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{4}=1$(a>2)的离心率为$\frac{{\sqrt{3}}}{3}$.斜率为k的直线l过点E(0,1),且与椭圆相交于C,D两点.
(1)求椭圆方程.
(2)若直线l与x轴相交于点G,且$\overline{GC}=\overline{DE}$,求k的值.
(3)求△COD的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知锐角α,β满足sinα=$\frac{{\sqrt{10}}}{10},cosβ=\frac{{2\sqrt{5}}}{5}$,则α+β的值为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{3π}{4}$或$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在梯形ABCD中,∠ADC=$\frac{π}{2}$,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,点E在BP上,且EB=2PE.
(1)求证:DP∥平面ACE;
(2)求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.集合M={x|x=$\frac{k•180°}{2}$±45°,k∈Z},N={x|x=$\frac{k•180°}{4}$±90°,k∈Z},则M、N之间的关系为(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.有甲、乙、丙、丁、戊5位同学,求:
(1)5位同学站成一排,甲、戊不在两端有多少种不同的排法?
(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的排法?
(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z=$\frac{1+i}{1-i}$,$\overline z$为z的共轭复数,则($\overline z$)5=(  )
A.iB.-iC.-25iD.25i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$f(x)=\frac{x}{1+|x|}$的图象关于原点对称.

查看答案和解析>>

同步练习册答案