精英家教网 > 高中数学 > 题目详情

已知f(x)=x2,g(x)=lnx,直线l:y=kx+b(常数k、b∈R)使得函数y=f(x)的图象在直线l的上方,同时函数y=g(x)的图象在直线l的下方,即对定义域内任意x,lnx<kx+b<x2恒成立.
试证明:
(1)k>0,且-lnk-1<b<-数学公式
(2)“数学公式<k<e”是“lnx<kx+b<x2”成立的充分不必要条件.

解:(1)根据题意,得
对任意x,lnx<kx+b,所以k>…(1分),
因为k、b是常数,所以当x充分大时,lnx>b,
从而k>>0…(2分).
因为kx+b<x2即x2-kx-b>0恒成立,
所以△=(-k)2+4b<0,得b<-…(4分).
因为lnx<kx+b即kx+b-lnx>0恒成立,
设h(x)=kx+b-lnx,则h'(x)=k-…(5分),
由h'(x)=0得x=>0,
∴0<x<时,h'(x)<0,h(x)单调递减;x>时时,h'(x)<0,h(x)单调递增…(7分),
所以h(x)的极小值从而也是最小值为h()=1+b-ln=1+b+lnk…(8分),
因为kx+b-lnx>0恒成立,所以h()=1+b+lnk>0,即b>-lnk-1,从而-lnk-1<b<-成立;…(9分).
(2)由(1)知-lnk-1<-,从而<lnk+1,其中k是正数…(10分),
如图,根据幂函数与对数函数单调性,
可得k应介于曲线f(x)=x2与g(x)=lnx的两个交点的横坐标之间,
设这两个交点横坐标分别为x1、x2,且x1<x2.…(11分),
因为k=时,=lnk+1,k=e时,=<2=lnk+1…(13分),
所以(,e)是(x1,x2)的真子集,
由此可得:“<k<e”是“lnx<kx+b<x2”成立的充分不必要条件.…(14分).
分析:(1)由lnx<kx+b恒成立,结合对数函数的性质,得k>0.由kx+b<x2恒成立,结合根的判别式可得b<-.再根据lnx<kx+b恒成立,讨论讨论函数h(x)=kx+b-lnx的单调性与最小值,得到h()=1+b+lnk>0,从而得原不等式成立.
(2)根据幂函数与对数函数单调性,可得k应介于曲线f(x)=x2与g(x)=lnx的两个交点的横坐标之间.通过计算比较f()与g()、f(e)与g(e)的大小,可得区间(,e)恰好位于两交点横坐标之间,从而证出本题的充分不必要条件.
点评:本题给出介于两个函数图象之间的一条线段对应的函数,求证参数的取值范围并证明充分条件,着重考查了基本初等函数、利用导数研究函数的单调性与最值和充分必要条件的证明等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案