如图,边长为a的正方形ABCD中,点E、F分别在AB、BC上,且
,将△AED、△CFD分别沿DE、DF折起,使A、C两点重合于点
,连结A¢B.![]()
(Ⅰ)判断直线EF与A¢D的位置关系,并说明理由;
(Ⅱ)求二面角F-A¢B-D的大小.
(Ⅰ)异面垂直;(Ⅱ)
.
解析试题分析:(Ⅰ)先证明A¢D⊥面A¢EF即可得EF与A¢D的位置关系是异面垂直;
(Ⅱ)先作出并证明ÐOHF是二面角F-A¢B-D的平面角,再利用解三角形的方法求出ÐOHF的大小.
试题解析:(Ⅰ)A¢D⊥EF. 1分
证明如下:因为A¢D⊥A¢E,A¢D⊥A¢F,
所以A¢D⊥面A¢EF,又EFÌ面A¢EF,
所以A¢D⊥EF.
直线EF与A¢D的位置关系是异面垂直 4分![]()
(Ⅱ)方法一、设EF、BD相交于O,连结A¢O,作FH⊥A¢B于H,
连结OH, 因为EF⊥BD, EF⊥A¢D.
所以EF⊥面A¢BD,A¢BÌ面A¢BD, 所以A¢B⊥EF,又A¢B⊥FH,
故A¢B⊥面OFH,OHÌ面OFH, 所以A¢B⊥OH,
故ÐOHF是二面角F-A¢B-D的平面角.
,A¢E=A¢F=
,EF=
,则
,
所以,△A¢EF是直角三角形,则
,
则
,
,∴
,
,
则A¢B=
,所以
,
所以, tanÐOHF=
,故ÐOHF=
.
所以二面角F-A¢B-D的大小为
. 12分
方法二、设EF、BD相交于O,连结A¢O,作
于G,可得A¢G⊥面BEDF,
,A¢E=A¢F=
,EF=
,则
,![]()
所以,△A¢EF是直角三角形,则
,
则
,则
,
∴
,
,
所以
,
,则
,
分别以BF、BE为空间直角坐标系的x、y轴,建立如图坐标系,则
,
,
,
,故
,
,
,
,
因
,
,故面A¢BD的一个法向量
,
设面A¢BF的一法向量为
,则
取
,
设二面角F-A¢B-D的平面角为
,则
,∴
,
故二面角F-A¢B-D的大小为
. 12分
考点:1.直线与平面的位置关系; 2.二面角.
科目:高中数学 来源: 题型:解答题
四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.![]()
(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求二面角
的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.![]()
(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com