【题目】已知函数
.
(Ⅰ)不需证明,直接写出
的奇偶性:
(Ⅱ)讨论
的单调性,并证明
有且仅有两个零点:
(Ⅲ)设
是
的一个零点,证明曲线
在点
处的切线也是曲线
的切线.
【答案】(Ⅰ)奇函数;(Ⅱ)
在
和
上单调递增;证明见解析;(Ⅲ)证明见解析.
【解析】
(Ⅰ)先计算出函数的定义域,然后根据简单函数的奇偶性,简单判断可得结果.
(Ⅱ)计算函数
,可得函数
在
和
上单调递增,然后利用零点存在性定理以及函数的奇偶性,可得结果.
(Ⅲ)简单判断可知点
在曲线
上,计算直线
的斜率以及曲线
在点
处切线的斜率和曲线
在点
处切线的斜率即可.
(Ⅰ)定义域为
,函数为奇函数.
(Ⅱ)因为
,
由(Ⅰ)知,
为奇函数,且![]()
所以,
在
和
上单调递增.
在
上,
,
![]()
所以
在
上有唯一零点
,即
.
又
为奇函数,
.
故
在
上有唯一零点
.
综上,
有且仅有两个零点.
(Ⅲ)因为
,故点
在曲线
上.
由题设知
即
,连接
,
则直线
的斜率![]()
曲线
在点
处切线的斜率是
;
曲线
在点
处切线的斜率也是
.
所以曲线
在点
处的切线也是曲线
的切线.
科目:高中数学 来源: 题型:
【题目】2019年女排世界杯(第13届女排世界杯)是由国际排联
举办的赛事,比赛于2019年9月14日至9月29日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球
_
,已知这种球的质量指标ξ(单位:
)服从正态分布
.比赛赛制采取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取5局3胜制):比赛中以
或
取胜的球队积3分,负队积0分;而在比赛中以
取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为
.
(1)如果比赛准备了1000个排球,估计质量指标在
内的排球个数(计算结果取整数)
(2)第10轮比赛中,记中国队
取胜的概率为
,求出
的最大值点
,并以
作为p的值,解决下列问题.
(i)在第10轮比赛中,中国队所得积分为X,求X的分布列;
(ii)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.
参考数据:
,则
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:
金额分组 |
|
|
|
|
|
|
频 数 | 3 | 9 | 17 | 11 | 8 | 2 |
(1)求产生的手气红包的金额不小于9元的频率;
(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);
(3)在这50个红包组成的样本中,将频率视为概率.
①若红包金额在区间
内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;
②随机抽取手气红包金额在
内的两名幸运者,设其手气金额分别为
,
,求事件“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
,
为两两不重合的平面,
,
,
为两两不重合的直线,给出下列四个命题:
①若
,
,则
;
②若
,
,
,
,则
;
③若
,
,则
;
④若
,
,
,
,则
.
其中真命题是( )
A.①③B.②④C.③④D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为
的椭圆
的短轴的两个端点分别为
、
,
为椭圆
上异于
、
的动点,且
的面积最大值为
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)射线
与椭圆
交于点
,过点
作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点
和点
,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=
(a∈R,e为自然对数的底数)
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在
上无零点,求a的最小值;
(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,PA∥CE,AB=CE
PA,PA⊥平面ABCD.
![]()
(1)证明:PE⊥平面DBE;
(2)求二面角B﹣PD﹣E的正弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是坐标原点,椭圆
:
的左右焦点分别为
,
,点
在椭圆上,若
的面积最大时
且最大面积为
.
(1)求椭圆
的标准方程;
(2)直线
:
与椭圆
在第一象限交于点
,点
是第四象限内的点且在椭圆
上,线段
被直线
垂直平分,直线
与椭圆交于另一点
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com