【题目】2019年女排世界杯(第13届女排世界杯)是由国际排联
举办的赛事,比赛于2019年9月14日至9月29日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球
_
,已知这种球的质量指标ξ(单位:
)服从正态分布
.比赛赛制采取单循环方式,即每支球队进行11场比赛,最后靠积分选出最后冠军.积分规则如下(比赛采取5局3胜制):比赛中以
或
取胜的球队积3分,负队积0分;而在比赛中以
取胜的球队积2分,负队积1分.9轮过后,积分榜上的前2名分别为中国队和美国队,中国队积26分,美国队积22分.第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为
.
(1)如果比赛准备了1000个排球,估计质量指标在
内的排球个数(计算结果取整数)
(2)第10轮比赛中,记中国队
取胜的概率为
,求出
的最大值点
,并以
作为p的值,解决下列问题.
(i)在第10轮比赛中,中国队所得积分为X,求X的分布列;
(ii)已知第10轮美国队积3分,判断中国队能否提前一轮夺得冠军(第10轮过后,无论最后一轮即第11轮结果如何,中国队积分最多)?若能,求出相应的概率;若不能,请说明理由.
参考数据:
,则
,
,
.
【答案】(1)477个;(2)
;(i)见解析;(ii)能提前一轮夺得冠军,
.
【解析】
(1)由正态分布
原则即可求出排球个数;
(2)根据二项分布先求出
,再利用导数求出
取最大值时
的值;
根据比赛积分规则,得出中国队得分可能的取值,然后求出其分布列;
由
的分布列分析即可得出能否提前一轮夺得冠军并求得其概率.
解:∵
,∴![]()
所以质量指标在
内的排球个数约为
个
(2)
,
.
令
,得
.
当
时,
,
在
上为增函数;
当
时,
,
在
上为减函数.
所以
的最大值点
.从而
.
![]()
的可能取值为
.
,
,
,
,
![]()
的分布列为
| 3 | 2 | 1 | 0 |
|
|
|
|
|
若
,则中国队10轮后的总积分为29分,美国队即便第10轮和第11轮都积3分,则11轮过后的总积分是28分,
,所以,中国队如果第10轮积3分,则可提前一轮夺得冠军,其概率为
.
科目:高中数学 来源: 题型:
【题目】“二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“﹣﹣”,其中“─”在二进制中记作“1”,“﹣﹣”在二进制中记作“0”.如符号“”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】受新冠肺炎疫情影响,某学校按上级文件指示,要求错峰放学,错峰有序吃饭.高三年级一层楼六个班排队,甲班必须排在前三位,且丙班、丁班必须排在一起,则这六个班排队吃饭的不同安排方案共有( )
A.240种B.120种C.188种D.156种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,四点
,
,
,
中恰有三个点在椭圆
上,左、右焦点分别为
、
.
(1)求椭圆
的方程;
(2)过左焦点
且不与坐标轴平行的直线
交椭圆于
、
两点,若线段
的垂直平分线交
轴于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市拟定出台“房产限购的年龄政策”.为了解人们对“房产限购年龄政策”的态度,在2060岁的人群中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如图所示:
![]()
年龄 |
|
|
|
|
|
支持的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填
列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异?
44岁以下 | 44岁及44岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
(2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会,现从这8人中随机抽2人.记抽到44岁以上的人数为
,求随机变量
的分布列及数学期望.
参考公式:
.
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)不需证明,直接写出
的奇偶性:
(Ⅱ)讨论
的单调性,并证明
有且仅有两个零点:
(Ⅲ)设
是
的一个零点,证明曲线
在点
处的切线也是曲线
的切线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且对一切正整数
都有
.
(1)求证:
;
(2)求数列
的通项公式;
(3)是否存在实数
,使不等式
,对一切正整数
都成立?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com