【题目】已知定点
,定直线
,动圆
经过点
且与直线
相切.
(I)求动圆圆心
的轨迹方程;
(II)设点
为曲线
上不同的两点,且
,过
两点分别作曲线
的两条切线,且二者相交于点
,求
面积的最小值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,一条准线方程为![]()
⑴求椭圆
的方程;
⑵设
为椭圆
上的两个动点,
为坐标原点,且
.
①当直线
的倾斜角为
时,求
的面积;
②是否存在以原点
为圆心的定圆,使得该定圆始终与直线
相切?若存在,请求出该定圆方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2019年3月份的利润;
![]()
甲公司新研制了一款产品,需要采购一批新型材料,现有
两种型号的新型材料可供选择,按规定每种新型材料最多可使用
个月,但新材料的不稳定性会导致材料损坏的年限不同,现对
两种型号的新型材料对应的产品各
件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命/材料类型 | 1个月 | 2个月 | 3个月 | 4个月 | 总计 |
A | 20 | 35 | 35 | 10 | 100 |
B | 10 | 30 | 40 | 20 | 100 |
经甲公司测算平均每包新型材料每月可以带来
万元收入,不考虑除采购成本之外的其他成本,
材料每包的成本为
万元,
材料每包的成本为
万元.假设每包新型材料的使用寿命都是整月数,且以频率作为每包新型材料使用寿命的概率,如果你是甲公司的负责人,以每包新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?
参考数据:
, ![]()
参考公式:回归直线方程
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期 | 12月2日 | 12月3日 | 12月4日 |
温差 | 11 | 13 | 12 |
发芽数 | 25 | 30 | 26 |
(1)请根据12月2日至12月4日的数据,求出
关于
的线性回归方程
;
(2)该农科所确定的研究方案是:先用上面的3组数据求线性回归方程,再选取2组数据进行检验.若12月5日温差为
,发芽数16颗,12月6日温差为
,发芽数23颗.由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
注:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为发挥体育在核心素养时代的独特育人价值,越来越多的中学已将某些体育项目纳入到学生的必修课程,甚至关系到是否能拿到毕业证.某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究性学习小组随机从该校高一年级学生中抽取了100人进行调查,其中男生60人,且抽取的男生中对游泳有兴趣的占
,而抽取的女生中有15人表示对游泳没有兴趣.
(1)试完成下面的
列联表,并判断能否有
的把握认为“对游泳是否有兴趣与性别有关”?
有兴趣 | 没兴趣 | 合计 | |
男生 | |||
女生 | |||
合计 |
(2)已知在被抽取的女生中有6名高一(1)班的学生,其中3名对游泳有兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳有兴趣的概率.
(3)该研究性学习小组在调查中发现,对游泳有兴趣的学生中有部分曾在市级和市级以上游泳比赛中获奖,如下表所示.若从高一(8)班和高一(9)班获奖学生中各随机选取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为
,求随机变量
的分布列及数学期望.
班级 |
|
|
|
|
|
|
|
|
|
|
|
市级比赛 获奖人数 | 2 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 4 | 2 |
|
市级以上比赛获奖人数 | 2 | 2 | 1 | 0 | 2 | 3 | 3 | 2 | 1 | 2 |
|
| 0.500 | 0.400 | 0.250 | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点
,
,上顶点为
,
,
为椭圆上任意一点,且
的面积最大值为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若点
.
为椭圆
上的两个不同的动点,且
(
为坐标原点),则是否存在常数
,使得
点到直线
的距离为定值?若存在,求出常数
和这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知以下说法正确的是 _____.(填序号)
![]()
①甲运动员的成绩好于乙运动员;②乙运动员的成绩好于甲运动员;
③甲、乙两名运动员的成绩没有明显的差异;④甲运动员的最低得分为0分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)将
的方程化为普通方程,将
的方程化为直角坐标方程;
(Ⅱ)已知直线
的参数方程为
,
为参数,且
,
与
交于点
,
与
交于点
,且
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com