精英家教网 > 高中数学 > 题目详情
已知二次函数f(x) 对任意x∈R,都有f (1-x)=f (1+x)成立,设向量
a
=(sinx,2),
b
=(2sinx,
1
2
),
c
=(cos2x,1),
d
=(1,2).
(1)分别求
a
b
c
d
的取值范围;
(2)当x∈[0,π]时,求不等式f(
a
b
)>f(
c
d
)的解集.
分析:(1)根据向量的坐标运算公式即可求得
a
b
c
d
的取值范围;
(2)由f (1-x)=f (1+x)可得f(x)图象关于x=1对称,结合f(x)为二次函数,
a
• 
b
≥1
c
d
≥1
,即
a
b
c
d
均在二次函数f(x)对称轴右侧,可对其开口方向分类讨论,结合其对应的单调情况求不等式f(
a
b
)>f(
c
d
)的解集
解答:解:(1)
a
b
=2sin2x+1≥1    
c
d
=2cos2x+2≥1
(2)∵f(1-x)=f(1+x)∴f(x)图象关于x=1对称
当二次项系数m>0时,f(x)在(1,+∞)内单调递增,
由f(
a
b
)>f(
c
d
)⇒
a
b
c
d
,即2sin2x+1>2cos2x+1
又∵x∈[0,π]∴x∈(
π
4
4
)

当二次项系数m<0时,f(x)在(1,+∞)内单调递减,
由f(
a
b
)>f(
c
d
)⇒
a
b
c
d
,即2sin2x+1<2cos2x+1
又∵x∈[0,π]∴x∈[0,
π
4
)∪(
4
,π]

故当m>0时不等式的解集为(
π
4
4
);当m<0时不等式的解集为 [0,
π
4
)∪(
4
,π]
点评:本题考查复合三角函数的单调性,关键在于确定好
a
b
≥1与
c
d
≥1
后,对二次函数f(x)的开口分类讨论,从而利用其单调性解决问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案