【题目】(2015
全国统考II)设函数f(x)=ln(1+|x|)-
,则使得f(x)
f(2x-1)成立的x的取值范围是()
A.(
,1)
B.(-
,
)
(1,+
)
C.(-
,
)
D.(-
,-
)
(
,+
)
【答案】A
【解析】由f(x)=ln(1+|x|)-
可知f(x)是偶函数,且在【0,+
)是增函数,所以f(x)
f(2x-1)
f(|x|)
f(|2x-1|)
|x|
|2x-1|
x2
(2x-1)2
x2
(2x-1)2![]()
![]()
x
1,故选 A.
【考点精析】根据题目的已知条件,利用函数奇偶性的性质和奇偶性与单调性的综合的相关知识可以得到问题的答案,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】如图,直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2CD=2AD=2.在等腰直角三角形CDE中,∠C=90°,点M,N分别为线段BC,CE上的动点,若
, 则
的取值范围是 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ![]()
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;
(2)当a<
时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:“若
,则关于x的不等式
的解集为空集”,那么它的逆命题,否命题,逆否命题,以及原命题中,假命题的个数是( )
A.0B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知f(x)=lnx+a(1-x),问:(1)讨论f(x) 的单调性;(2)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
(1)(I)讨论f(x) 的单调性;
(2)(II)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一周期内的图像时,列表并填入的部分数据如下表:
|
|
|
|
|
|
| 0 |
|
|
|
|
| 0 | 1 | 0 |
| 0 |
| 0 |
| 0 |
| 0 |
(1)请写出上表的
及函数
的解析式;
(2)将函数
的图像向右平移
个单位,再将所得图像上各点的横坐标缩小为原来的
,纵坐标不变,得到函数
的图像,求
的解析式及
的单调递增区间;
(3)在(2)的条件下,若
在
上恰有奇数个零点,求实数
与零点个数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·新课标I卷)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线C1: x=-2,圆C2:(x-1)2+(y+2)2=1,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求C1, C2的极坐标方程.
(2)若直线C3的极坐标方程为
,设C2, C3的交点为M,N,求△C2MN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·陕西)如图,椭圆E:
(a>b>0)经过点A(0,-1),且离心率为
.![]()
(1)求椭圆E的方程;
(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com